13,292 research outputs found

    U-Spin Tests of the Standard Model and New Physics

    Get PDF
    Within the standard model, a relation involving branching ratios and direct CP asymmetries holds for the B-decay pairs that are related by U-spin. The violation of this relation indicates new physics (NP). In this paper, we assume that the NP affects only the Delta S = 1 decays, and show that the NP operators are generally the same as those appearing in B -> pi K decays. The fit to the latest B -> pi K data shows that only one NP operator is sizeable. As a consequence, the relation is expected to be violated for only one decay pair: Bd -> K0 pi0 and Bs -> Kbar0 pi0.Comment: 12 pages, latex, no figures. References changed to follow MPL guidelines; info added about U-spin breaking and small NP strong phases; discussion added about final-state pi-K rescattering; analysis and conclusions unaltere

    Dimerized and trimerized phases for spin-2 Bosons in a one-dimensional optical lattice

    Get PDF
    We study the phase diagram for spin-2 bosons loaded in a one-dimensional optical lattice. By using non-Abelian density matrix renormalization group (DMRG) method we identify three possible phases: ferromagnetic, dimerized, and trimerized phases. We sketch the phase boundaries based on DMRG. We illustrate two methods for identifying the phases. The first method is based on the spin-spin correlation function while in the second method one observes the excitation gap as a dimerization or a trimerization superlattice is imposed. The advantage of the second method is that it can also be easily implemented in experiments. By using the scattering lengths in the literature we estimate that 83^{83}Rb, 23^{23}Na, and 87^{87}Rb be ferromagnetic, dimerized, and trimerized respectively.Comment: 4 pages, 3 figures. Add acknowledgemen

    Zero differential resistance in two-dimensional electron systems at large filling factors

    Full text link
    We report on a state characterized by a zero differential resistance observed in very high Landau levels of a high-mobility two-dimensional electron system. Emerging from a minimum of Hall field-induced resistance oscillations at low temperatures, this state exists over a continuous range of magnetic fields extending well below the onset of the Shubnikov-de Haas effect. The minimum current required to support this state is largely independent on the magnetic field, while the maximum current increases with the magnetic field tracing the onset of inter-Landau level scattering

    Visualization of Coherent Destruction of Tunneling in an Optical Double Well System

    Full text link
    We report on a direct visualization of coherent destruction of tunneling (CDT) of light waves in a double well system which provides an optical analog of quantum CDT as originally proposed by Grossmann, Dittrich, Jung, and Hanggi [Phys. Rev. Lett. {\bf 67}, 516 (1991)]. The driven double well, realized by two periodically-curved waveguides in an Er:Yb-doped glass, is designed so that spatial light propagation exactly mimics the coherent space-time dynamics of matter waves in a driven double-well potential governed by the Schr\"{o}dinger equation. The fluorescence of Er ions is exploited to image the spatial evolution of light in the two wells, clearly demonstrating suppression of light tunneling for special ratios between frequency and amplitude of the driving field.Comment: final versio

    Trends and Variation in End-of-Life Care for Medicare Beneficiaries With Severe Chronic Illness

    Get PDF
    Provides an updated analysis of regional and hospital variations in end-of-life care for Medicare beneficiaries with chronic illnesses, including percentage of hospital deaths, days in intensive care units, and physician labor per patient

    Magnetotransport in a two-dimensional electron system in dc electric fields

    Full text link
    We report on nonequilibrium transport measurements in a high-mobility two-dimensional electron system subject to weak magnetic field and dc excitation. Detailed study of dc-induced magneto-oscillations, first observed by Yang {\em et al}., reveals a resonant condition that is qualitatively different from that reported earlier. In addition, we observe dramatic reduction of resistance induced by a weak dc field in the regime of separated Landau levels. These results demonstrate similarity of transport phenomena in dc-driven and microwave-driven systems and have important implications for ongoing experimental search for predicted quenching of microwave-induced zero-resistance states by a dc current.Comment: Revised version, to appear in Phys. Rev.

    Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry

    Get PDF
    We study the quantum critical phase of a SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the entanglement entropy and finite-size energies by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectrum, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)1_1 Wess-Zumino-Witten model. We find that while in the whole critical phase the Hamiltonian is only SU(2) invariant, there is an emergent SU(3) symmetry in the thermodynamic limit

    Implications of the X-ray Variability for the Mass of MCG-6-30-15

    Get PDF
    The bright Seyfert 1 galaxy \mcg shows large variability on a variety of time scales. We study the \aproxlt 3 day time scale variability using a set of simultaneous archival observations that were obtained from \rxte and the {\it Advanced Satellite for Cosmology and Astrophysics} (\asca). The \rxte\ observations span nearly 10610^6 sec and indicate that the X-ray Fourier Power Spectral Density has an rms variability of 16%, is flat from approximately 10^{-6} - 10^{-5} Hz, and then steepens into a power law fα\propto f^{-\alpha} with \alpha\aproxgt 1. A further steepening to α2\alpha \approx 2 occurs between 10^{-4}-10^{-3} Hz. The shape and rms amplitude are comparable to what has been observed in \ngc and \cyg, albeit with break frequencies that differ by a factor of 10^{-2} and 10^{4}, respectively. If the break frequencies are indicative of the central black hole mass, then this mass may be as low as 106M10^6 {\rm M}_\odot. An upper limit of 2\sim 2 ks for the relative lag between the 0.5-2 keV \asca band compared to the 8-15 keV \rxte band was also found. Again by analogy with \ngc and \cyg, this limit is consistent with a relatively low central black hole mass.Comment: 5 pages, 3 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, revised version, accepted for publication in ApJ Letter

    A simulation framework for UAV sensor fusion

    Get PDF
    Proceedings of: 5th International Conference, HAIS 2010, San Sebastián, Spain, June 23-25, 2010.he behavior recognition is one of the most prolific lines of research in recent decades in the field of computer vision. Within this field, the majority of researches have focused on the recognition of the activities carried out by a single individual, however this paper deals with the problem of recognizing the behavior of a group of individuals, in which relations between the component elements are of great importance. For this purpose it is exposed a new representation that concentrates all necessary information concerning relations peer to peer present in the group, and the semantics of the different groups formed by individuals and training (or structure) of each one of them. The work is presented with the dataset created in CVBASE06 dealing the European handballThis work was supported in part by Projects ATLANTIDA, CICYT TIN2008-06742- C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM CONTEXTS S2009/TIC-1485 and DPS2008-07029-C02-02.Publicad
    corecore