140 research outputs found

    Observing the Structure of the Landscape with the CMB Experiments

    Full text link
    Assuming that inflation happened through a series of tunneling in the string theory landscape, it is argued that one can determine the structure of vacua using precise measurements of the scalar spectral index and tensor perturbations at large scales. It is shown that for a vacuum structure where the energy gap between the minima is constant, i.e. Ï”i=imf4\epsilon_i=i m_f^4, one obtains the scalar spectral index, nsn_s, to be ≃0.9687\simeq 0.9687, for the modes that exit the horizon 60 e-folds before the end of inflation. Alternatively, for a vacuum structure in which the energy gap increases linearly with the vacuum index, i.e. Ï”i=i22mf4\epsilon_i=\frac{i^2}{2} m_f^4, nsn_s turns out to be ≃0.9614\simeq 0.9614. Both these two models are motivated within the string theory landscape using flux-compactification and their predictions for scalar spectral index are compatible with WMAP results. For both these two models, the results for the scalar spectral index turn out to be independent of mfm_f. Nonetheless, assuming that inflation started at Planckian energies and that there had been successful thermalization at each step, one can constrain mf<2.6069×10−5mPm_f<2.6069\times 10^{-5} m_P and mf<6.5396×10−7mPm_f<6.5396\times 10^{-7} m_P in these two models, respectively. Violation of the single-field consistency relation between the tensor and scalar spectra is another prediction of chain inflation models. This corresponds to having a smaller tensor/scalar ratio at large scales in comparison with the slow-roll counterparts. Similar to slow-roll inflation, it is argued that one can reconstruct the vacuum structure using the CMB experiments.Comment: v1: 8 pages, 2 figures; v2: grammatical typos corrected, results unchanged v3: To be published in JCA

    Massless radiation from Strings: quantum spectrum average statistics and cusp-kink configurations

    Full text link
    We derive general formulae for computing the average spectrum for Bosonic or Fermionic massless emission from generic or particular sets of closed superstring quantum states, among the many occurring at a given large value of the number operator. In particular we look for states that can produce a Bosonic spectrum resembling the classical spectrum expected for peculiar cusp-like or kink-like classical configurations, and we perform a statistical counting of their average number. The results can be relevant in the framework of possible observations of the radiation emitted by cosmic strings.Comment: 13 pages, 4 figures, improved explanations, an appendix added on rotating folded strin

    Search for the most stable massive state in superstring theory

    Full text link
    In ten dimensional type II superstring, all perturbative massive states are unstable, typically with a short lifetime compared to the string scale. We find that the lifetime of the average string state of mass M has the asymptotic form T < const.1/(g^2 M). The most stable string state seems to be a certain state with high angular momentum which can be classically viewed as a circular string rotating in several planes ("the rotating ring"), predominantly decaying by radiating soft massless NS-NS particles, with a lifetime T = c_0 M^5/g^2. Remarkably, the dominant channel is the decay into a similar rotating ring state of smaller mass. The total lifetime to shrink to zero size is ~ M^7. In the presence of D branes, decay channels involving open strings in the final state are exponentially suppressed, so the lifetime is still proportional to M^5, except for a D brane at a special angle or flux. For large mass, the spectrum for massless emission exhibits qualitative features typical of a thermal spectrum, such as a maximum and an exponential tail. We also discuss the decay properties of rotating rings in the case of compact dimensions.Comment: 24 pages, 1 figure. Correction on lifetime of average stat

    Handbook on string decay

    Full text link
    We explain simple semi-classical rules to estimate the lifetime of any given highly-excited quantum state of the string spectrum in flat spacetime. We discuss both the decays by splitting into two massive states and by massless emission. As an application, we study a solution describing a rotating and pulsating ellipse which becomes folded at an instant of time -- the ``squashing ellipse''. This string interpolates between the folded string with maximum angular momentum and the pulsating circular string. We explicitly compute the quantum decay rate for the corresponding quantum state, and verify the basic rules that we propose. Finally, we give a more general (4-parameter) family of closed string solutions representing rotating and pulsating elliptical strings.Comment: 18 pages, 9 figures. Final version appeared in JHE

    Long Lived Large Type II Strings: decay within compactification

    Full text link
    Motivated also by recent revival of interest about metastable string states (as cosmic strings or in accelerator physics), we study the decay, in presence of dimensional compactification, of a particular superstring state, which was proven to be remarkably long-lived in the flat uncompactified scenario. We compute the decay rate by an exact numerical evaluation of the imaginary part of the one-loop propagator. For large radii of compactification, the result tends to the fully uncompactified one (lifetime T = const M^5/g^2), as expected, the string mainly decaying by massless radiation. For small radii, the features of the decay (emitted states, initial mass dependence,....) change, depending on how the string wraps on the compact dimensions.Comment: 32 pages, 24 text plus appendices, 4 figure

    Interactions of Cosmic Superstrings

    Get PDF
    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p,q)(p,q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.Comment: 22 pages, 6 figures; v2: updated reference

    Quantum effects in gravitational wave signals from cuspy superstrings

    Get PDF
    We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting cusps. The classical computation of the gravitational radiation signal from cuspy strings features strong bursts in the special null directions associated to the cusps. We perform a quantum computation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave detector using matched filtering and located in the special null direction associated to the cusp. We study the quantum statistics (expectation value and variance) of the measured filtered signal and find that it is very sharply peaked around the classical prediction. Ultimately, this result follows from the fact that the detector is a low-pass filter which is blind to the violent high-frequency quantum fluctuations of both the string worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur

    On Tunnelling In Two-Throat Warped Reheating

    Full text link
    We revisit the energy transfer necessary for the warped reheating scenario in a two-throat geometry. We study KK mode wavefunctions of the full two-throat system in the Randall--Sundrum (RS) approximation and find an interesting subtlety in the calculation of the KK mode tunnelling rate. While wavepacket tunnelling is suppressed unless the Standard Model throat is very long, wavefunctions of modes localized in different throats have a non-zero overlap and energy can be transferred between the throats by interactions between such KK modes. The corresponding decay rates are calculated and found to be faster than the tunnelling rates found in previously published works. However, it turns out that the imaginary parts of the mode frequencies, induced by the decay, slow the decay rates themselves down. The self-consistent decay rate turns out to be given by the plane wave tunnelling rate considered previously in the literature. We then discuss mechanisms that may enhance the energy transfer between the throats over the RS rates. In particular, we study models in which the warp factor changes in the UV region less abruptly than in the RS model, and find that it is easy to build phenomenological models in which the plane wave tunnelling rate, and hence the KK mode interaction rates, are enhanced compared to the standard RS setup.Comment: 27 pages + appendices, 5 figures, latex. v2: Discussion of decay in Section 4 changed: the most dangerous graviton amplitudes are zero, the results are now more positive for the warped reheating scenario; typos fixed, discussion cleaned up. v3:corrections in Section 5 (decay rates slowed down), mild changes of overall conclusion

    Gravitational waves from first order phase transitions during inflation

    Full text link
    We study the production, spectrum and detectability of gravitational waves in models of the early Universe where first order phase transitions occur during inflation. We consider all relevant sources. The self-consistency of the scenario strongly affects the features of the waves. The spectrum appears to be mainly sourced by collisions of bubble of the new phases, while plasma dynamics (turbulence) and the primordial gauge fields connected to the physics of the transitions are generally subdominant. The amplitude and frequency dependence of the spectrum for modes that exit the horizon during inflation are different from those of the waves produced by quantum vacuum oscillations of the metric or by first order phase transitions not occurring during inflation. A moderate number of slow (but still successful) phase transitions can leave detectable marks in the CMBR, but the signal weakens rapidly for faster transitions. When the number of phase transitions is instead large, the primordial gravitational waves can be observed both in the CMBR or with LISA (marginally) and especially DECIGO. We also discuss the nucleosynthesis bound and the constraints it places on the parameters of the models.Comment: minor changes in the text and the references to match the published versio

    On stable higher spin states in Heterotic String Theories

    Full text link
    We study properties of 1/2 BPS Higher Spin states in heterotic compactifications with extended supersymmetry. We also analyze non BPS Higher Spin states and give explicit expressions for physical vertex operators of the first two massive levels. We then study on-shell tri-linear couplings of these Higher Spin states and confirm that BPS states with arbitrary spin cannot decay into lower spin states in perturbation theory. Finally, we consider scattering of vector bosons off higher spin BPS states and extract form factors and polarization effects in various limits.Comment: 38 page
    • 

    corecore