129 research outputs found

    Zinc Supplementation with Polaprezinc Protects Mouse Hepatocytes against Acetaminophen-Induced Toxicity via Induction of Heat Shock Protein 70

    Get PDF
    Polaprezinc, a chelate compound consisting of zinc and l-carnosine, is clinically used as a medicine for gastric ulcers. It has been shown that induction of heat shock protein (HSP) is involved in protective effects of polaprezinc against gastric mucosal injury. In the present study, we investigated whether polaprezinc and its components could induce HSP70 and prevent acetaminophen (APAP) toxicity in mouse primary cultured hepatocytes. Hepatocytes were treated with polaprezinc, zinc sulfate or l-carnosine at the concentration of 100 µM for 9 h, and then exposed to 10 mM APAP. Polaprezinc or zinc sulfate increased cellular HSP70 expression. However, l-carnosine had no influence on it. Pretreatment of the cells with polaprezinc or zinc sulfate significantly suppressed cell death as well as cellular lipid peroxidation after APAP treatment. In contrast, pretreatment with polaprezinc did not affect decrease in intracellular glutathione after APAP. Furthermore, treatment with KNK437, an HSP inhibitor, attenuated increase in HSP70 expression induced by polaprezinc, and abolished protective effect of polaprezinc on cell death after APAP. These results suggested that polaprezinc, in particular its zinc component, induces HSP70 expression in mouse primary cultured hepatocytes, and inhibits lipid peroxidation after APAP treatment, resulting in protection against APAP toxicity

    The Subaru FMOS Galaxy Redshift Survey (FastSound). II. The Emission Line Catalog and Properties of Emission Line Galaxies

    Full text link
    We present basic properties of \sim3,300 emission line galaxies detected by the FastSound survey, which are mostly Hα\alpha emitters at zz \sim 1.2-1.5 in the total area of about 20 deg2^2, with the Hα\alpha flux sensitivity limit of 1.6×1016erg cm2s1\sim 1.6 \times 10^{-16} \rm erg \ cm^{-2} s^{-1} at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound Hα\alpha emitters, which have Hα\alpha luminosities of 1041.810^{41.8}-1043.310^{43.3} erg/s, SFRs of 20--500 MM_\odot/yr, and stellar masses of 1010.010^{10.0}--1011.310^{11.3} MM_\odot. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of \sim 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-Hα\alpha lines is about 4% in the single-line emission galaxies, which are mostly [OIII]λ\lambda5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which Hα\alpha, [NII]λλ\lambda \lambda6548,6583, [SII]λλ\lambda \lambda6717, 6731, and [OI]λλ\lambda \lambda6300,6364 are seen.Comment: 17 pages, 15 figures, accepted for publication in PAS

    Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells

    Get PDF
    Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance

    Polaprezinc Protects Mice against Endotoxin Shock

    Get PDF
    Polaprezinc (PZ), a chelate compound consisting of zinc and l-carnosine (Car), is an anti-ulcer drug developed in Japan. In the present study, we investigated whether PZ suppresses mortality, pulmonary inflammation, and plasma nitric oxide (NO) and tumor necrosis factor (TNF)-α levels in endotoxin shock mice after peritoneal injection of lipopolysaccharide (LPS), and how PZ protects against LPS-induced endotoxin shock. PZ pretreatment inhibited the decrease in the survival rate of mice after LPS injection. PZ inhibited the increases in plasma NO as well as TNF-α after LPS. Compatibly, PZ suppressed LPS-induced inducible NO synthase mRNA transcription in the mouse lungs. PZ also improved LPS-induced lung injury. However, PZ did not enhance the induction of heat shock protein (HSP) 70 in the mouse lungs after LPS. Pretreatment of RAW264 cells with PZ suppressed the production of NO and TNF-α after LPS addition. This inhibition likely resulted from the inhibitory effect of PZ on LPS-mediated nuclear factor-κB (NF-κB) activation. Zinc sulfate, but not Car, suppressed NO production after LPS. These results indicate that PZ, in particular its zinc subcomponent, inhibits LPS-induced endotoxin shock via the inhibition of NF-κB activation and subsequent induction of proinflammatory products such as NO and TNF-α, but not HSP induction

    Geranylgeranylacetone Ameliorates Inflammatory Response to Lipopolysaccharide (LPS) in Murine Macrophages: Inhibition of LPS Binding to The Cell Surface

    Get PDF
    We investigated whether pretreatment with geranylgeranylacetone (GGA), a potent heat shock protein (HSP) inducer, could inhibit proinflammatory cytokine liberation and nitric oxide (NO) production in lipopolysaccharide (LPS)-treated murine macrophages. The levels of NO and tumor necrosis factor-α (TNF-α) released from murine macrophage RAW 264 cells were increased dose- and time-dependently following treatment with LPS (1 µg/ml). GGA (80 µM) treatment 2 h before LPS addition significantly suppressed TNF-α and NO productions at 12 h and 24 h after LPS, respectively, indicating that GGA inhibits activation of macrophages. However, replacement by fresh culture medium before LPS treatment abolished the inhibitory effect of GGA on NO production in LPS-treated cells. Furthermore, GGA inhibited both HSP70 and inducible NO synthase expressions induced by LPS treatment despite an HSP inducer. When it was examined whether GGA interacts with LPS and/or affects expression of Toll-like receptor 4 (TLR4) and CD14 on the cell surface, GGA inhibited the binding of LPS to the cell surface, while GGA did not affect TLR4 and CD14 expressions. These results indicate that GGA suppresses the binding of LPS to the cell surface of macrophages, resulting in inhibiting signal transduction downstream of TLR4

    Biotin levels in blood and follicular fluid

    Get PDF
    It has been shown that biotin, a water-soluble vitamin (B7), plays roles in reproductive functions, such as oocyte maturation and embryo development, in experimental animals. On the other hand, little is known about the clinical effects of biotin on human reproduction. In this study, serum and follicular fluid biotin levels were measured in patients who underwent in vitro fertilization / intracytoplasmic sperm injection (IVF / ICSI), and their associations with reproductive outcomes were evaluated. As a result, biotin was detected in follicular fluid, as well as serum, and the biotin levels of follicular fluid were found to be positively correlated with those of serum. The biotin levels of serum were higher than those of follicular fluid, suggesting that biotin may be taken up into the follicular fluid from the blood. Although serum and follicular fluid biotin levels tended to be higher in pregnant patients than in non-pregnant patients, these data did not show the significant statistical difference. These findings indicate that biotin does not contribute to the maintenance of oocyte quality, and hence, it does not increase fertilization and pregnancy rates

    双極性障害におけるグルタミン酸神経伝達異常に関するMRS研究

    Get PDF
    Background: Previous studies of patients with bipolar disorder (BD) using magnetic resonance spectroscopy (MRS) have shown neurophysiological abnormalities related to the glutamate (Glu)-glutamine (Gln) cycle, membrane turnover, and neuronal integrity, although the results were neither consistent nor conclusive. Recently it has been reported the Gln/Glu ratio is the most useful index, quantifying neuronal-glial interactions and the balance of glutamatergic metabolites In this MRS study, we elucidated the abnormalities of metabolites in a larger sample of patients with BD with a high-field MRI system. Methods: Sixty-two subjects (31 patients with BD and 31 healthy controls [HC]) underwent 3T proton MRS (1H-MRS) of the anterior cingulate cortex (ACC) and left basal ganglia (ltBG) using a stimulated echo acquisition mode (STEAM) sequence. Results: After verifying the data quality, 20 patients with BD and 23 age- and gender-matched HCs were compared using repeated-measures analysis of covariance (ANCOVA). Compared to the HC group, the BD group showed increased levels of Gln, creatine (Cr), N-acetyl aspartate (NAA), choline (Cho), and an increased ratio of Gln to Glu in the ACC, and increased Gln and Cho in the ltBG. These findings remained after the participants with BD were limited to only euthymic patients. After removing the influence of lithium (Li) and sodium valproate (VPA), we observed activated glutamatergic neurotransmission in the ACC but not in the ltBG. Limitations: The present findings are cross-sectional and metabolites were measured in only two regions. Conclusions: Our results support a wide range of metabolite changes in patients with BD involved in glutamatergic neurotransmission, membrane turnover, and neuronal integrity. Moreover, the elevation of Gln/Glu ratio suggested that hyperactivity of glutamatergic neurotransmission in the ACC is a disease marker for BD

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore