5,314 research outputs found
Numerical experiments of tomographic optical imaging inside scattering media
Optical imaging deep inside scattering media is an outstanding problem across
many disciplines. Numerical modeling can accelerate progress by providing the
ground truth, the flexibility to tailor the system and the imaging scheme, and
the ease of comparing different methods. Here we realize quantitative modeling
of five scattering-based imaging methods through multi-source simulations of
the inhomogeneous wave equation in a two-dimensional scattering medium that is
roughly 800 wavelengths by 550 wavelengths in size. These large-scale
simulations are enabled by a new "augmented partial factorization" numerical
approach. We analyze the recently proposed scattering matrix tomography method,
reflectance confocal microscopy, optical coherence tomography, optical
coherence microscopy, and interferometric synthetic aperture microscopy for
imaging embedded nanoparticle targets. Having access to the ground-truth
configuration, we can rigorously assess the performance and the limit of these
methods while identifying artifacts that are otherwise impossible to detect.
Such numerical experiments are cheap, convenient, versatile, and provide an
ideal testbed for developing new imaging methods and algorithms
Pattern formation in a polymer thin film induced by an in-plane electric field
This letter reports experimental work involving use of an in-plane electric field to induce morphological patterns in a thin polymer film. The film was first spin coated onto a glass wafer. Then, it was heated to above its glass transition temperature to achieve mobility in the fluid. An in-plane electric field was applied using two parallel electrodes, spaced 10 mm10 mm apart, whereupon the initially flat polymer∕air interface lost stability and formed islands. The self-assembled islands exhibited a narrow size distribution and demonstrated spatial ordering. We attribute the pattern formation to a combined mechanism of minimization of combined interface energy and electrostatic energy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70549/2/APPLAB-85-7-1161-1.pd
Quantum Criticality from in-situ Density Imaging
We perform large-scale Quantum Monte Carlo (QMC) simulations for strongly
interacting bosons in a 2D optical lattice trap, and confirm an excellent
agreement with the benchmarking in-situ density measurements by the Chicago
group [1]. We further present a general finite temperature phase diagram both
for the uniform and the trapped systems, and demonstrate how the universal
scaling properties near the superfluid(SF)-to-Mott insulator(MI) transition can
be observed by analysing the in-situ density profile. The characteristic
temperature to find such quantum criticality is estimated to be of the order of
the single-particle bandwidth, which should be achievable in the present or
near future experiments. Finally, we examine the validity regime of the local
fluctuation-dissipation theorem (FDT), which can be a used as a thermometry in
the strongly interacting regime.Comment: 4 page
Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images
<p>Abstract</p> <p>Background</p> <p>Understanding the endocytosis process of gold nanoparticles (AuNPs) is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In this paper, the size-dependent endocytosis of AuNPs was investigated by using plasmonic scattering images without any labeling.</p> <p>Results</p> <p>The scattering images of AuNPs and the vesicles were mapped by using an optical sectioning microscopy with dark-field illumination. AuNPs have large optical scatterings at 550-600 nm wavelengths due to localized surface plasmon resonances. Using an enhanced contrast between yellow and blue CCD images, AuNPs can be well distinguished from cellular organelles. The tracking of AuNPs coated with aptamers for surface mucin glycoprotein shows that AuNPs attached to extracellular matrix and moved towards center of the cell. Most 75-nm-AuNPs moved to the top of cells, while many 45-nm-AuNPs entered cells through endocytosis and accumulated in endocytic vesicles. The amounts of cellular uptake decreased with the increase of particle size.</p> <p>Conclusions</p> <p>We quantitatively studied the endocytosis of AuNPs with different sizes in various cancer cells. The plasmonic scattering images confirm the size-dependent endocytosis of AuNPs. The 45-nm-AuNP is better for drug delivery due to its higher uptake rate. On the other hand, large AuNPs are immobilized on the cell membrane. They can be used to reconstruct the cell morphology.</p
Pentacene-Based Thin-Film Transistors With a Solution-Process Hafnium Oxide Insulator
Abstract—Pentacene-based organic thin-film transistors with
solution-process hafnium oxide (HfOx) as gate insulating layer
have been demonstrated. The solution-process HfOx could not
only exhibit a high-permittivity (κ = 11) dielectric constant but
also has good dielectric strength. Moreover, the root-mean-square
surface roughness and surface energy (γs) on the surface of the
HfOx layer were 1.304 nm and 34.24 mJ/cm2, respectively. The
smooth, as well as hydrophobic, surface of HfOx could facilitate
the direct deposition of the pentacene film without an additional
polymer treatment layer, leading to a high field-effect mobility of
3.8 cm2/(V · s).
Index Terms—Hafnium oxide, high permittivity, organic thinfilm transistor (OTFT), solution process, surface energy
Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments
A study of polarized light transmitted through randomly scattering media of a polystyrene-microsphere solution is described. Temporal profiles of the Stokes vectors and the degree of polarization are measured experimentally and calculated theoretically based on a Monte Carlo technique. The experimental results match the theoretical results well, which demonstrates that the time-resolved Monte Carlo technique is a powerful tool that can contribute to the understanding of polarization propagation in biological tissue. Analysis based on the Stokes-Mueller formalism and the Mie theory shows that the first scattering event determines the major spatial patterns of the transmitted Stokes vectors. When an area detected at the output surface of a turbid medium is circularly symmetrical about the incident beam, the temporal profile of the transmitted light is independent of the incident polarization state. A linear relationship between the average order of the scatters and the light propagation time can be used to explain the exponential decay of the degree of polarization of transmitted light
High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator
Abstract—Pentacene-based organic thin-film transistors
(OTFTs) with solution-processed barium titanate (Ba1.2Ti0.8O3)
as a gate insulator are demonstrated. The electrical properties
of pentacene-based TFTs show a high field-effect mobility of
8.85 cm2 · V−1 · s−1, a low threshold voltage of −1.89 V, and a
low subthreshold slope swing of 310 mV/decade. The chemical
composition and binding energy of solution-processed barium
titanate thin films are analyzed through X-ray photoelectron
spectroscopy. The matching surface energy on the surface of
the barium titanate thin film is 43.12 mJ · m−2, which leads to
Stranski–Krastanov mode growth, and thus, high mobility is
exhibited in pentacene-based TFTs.
Index Terms—Barium titanate, high field-effect mobility, high
permittivity, organic thin-filmtransistor (OTFT), solution process
- …