1,023 research outputs found

    The Development of Audit Detection Risk Assessment System: Using the Fuzzy Theory and Audit Risk Model

    Get PDF
    The result of audit designation is significantly influenced by the audit evidence collected when planning the audit and the degree of detection risk is further depends on the amount of audit evidence. Therefore, when the assessment factors of detection risk are more objective and correct, audit costs and the risk of audit failure can be reduced. Thus, the aim of this paper is to design an audit detection risk assessment system that could more precisely assess detection risk, comparing with the traditional determination method of detection risk in order to increase the audit quality and reduce the possibility of audit failure. First, the grounded theory is used to reorganize 53 factors affecting detection risk mentioned in literatures and then employed the Delphi method to screen the 43 critical risk factors agreed upon by empirical audit experts. In addition, using the fuzzy theory and audit risk model to calculate the degree of detection risk allow the audit staff to further determine the amount of audit evidence collected and set up initial audit strategies and construct the audit detection risk assessment system. Finally, we considered a case study to evaluate the system in terms of its feasibility and validity

    Reduced Health-Related Quality of Life in Body Constitutions of Yin-Xu, and Yang-Xu, Stasis in Patients with Type 2 Diabetes: Taichung Diabetic Body Constitution Study

    Get PDF
    Aim. To evaluate how health-related quality of life (HRQOL) and traditional Chinese medicine (TCM) constitutions of Yin-Xu, Yang-Xu, and Stasis are related in type 2 diabetes patients. Method. Seven hundred and five subjects were recruited in 2010 for this study from a Diabetes Shared Care Network in Taiwan. Generic and disease-specific HRQOL were assessed by the short form 36 (SF-36) and the diabetes impact measurement scale (DIMS). Constitutions of Yin-Xu, Yang-Xu, and Stasis were then assessed by the body constitution questionnaire (BCQ), a questionnaire consisting of 44 items that evaluate the physiological state based on subjective symptoms and signs. Results. Estimated effects of the Ying-Xu and Stasis on all scales of the SF-36 were significantly negative, while estimated effects of the Yang-Xu on all scales (except for SF, RE, MH, and MCS) were significantly negative. For DIMS, the estimated effects of the Ying-Xu and Stasis on all scales were significantly negative except for Stasis on well-being, while Yang-Xu has a significantly negative effect only on symptoms. Conclusions. This study demonstrates that TCM constitutions of Yin-Xu, Yang-Xu, and Stasis are closely related to a reduction in HRQOL. These findings support the need for further research into the impact of intervention for TCM constitutions on HRQOL in patients with type 2 diabetes

    Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Organotin compounds (OTCs) have been widely used as stabilizers in the production of plastic, agricultural pesticides, antifoulant plaints and wood preservation. The toxicity of triphenyltin (TPT) compounds was known for their embryotoxic, neurotoxic, genotoxic and immunotoxic effects in mammals. The carcinogenicity of TPT was not well understood and few studies had discussed the effects of OTCs on gap junctional intercellular communication (GJIC) of cells.</p> <p>Method</p> <p>In the present study, the effects of triphenyltin chloride (TPTC) on GJIC in WB-F344 rat liver epithelial cells were evaluated, using the scrape-loading dye transfer technique.</p> <p>Results</p> <p>TPTC inhibited GJIC after a 30-min exposure in a concentration- and time-dependent manner. Pre-incubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 and PI3K inhibitor LY294002 decreased substantially the inhibition of GJIC by TPTC. After WB-F344 cells were exposed to TPTC, phosphorylation of Cx43 increased as seen in Western blot analysis.</p> <p>Conclusions</p> <p>These results show that TPTC inhibits GJIC in WB-F344 rat liver epithelial cells by altering the Cx43 protein expression through both MAPK and PI3-kinase pathways.</p

    Untargeted, spectral libraryâ free analysis of dataâ independent acquisition proteomics data generated using Orbitrap mass spectrometers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134139/1/pmic12370_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134139/2/pmic12370.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134139/3/pmic12370-sup-0001-SupplementaryInfo.pd

    Chinese Herbal Medicine Therapy and the Risk of Mortality for Chronic Hepatitis B Patients with Concurrent Liver Cirrhosis: a Nationwide Population-Based Cohort Study

    Get PDF
    Chronic hepatitis B (CHB) is increasingly recognized as a public health problem in Taiwan. After affected patients are diagnosed with contaminant liver cirrhosis (LC), adverse clinical outcomes, especially death, are common. This study aimed to investigate the effect of Chinese herbal medicine (CHM), an essential branch of Traditional Chinese medicine (TCM), on the mortality risk among CHB patients with contaminant LC. This longitudinal cohort study used the Taiwanese National Health Insurance Research Database to identify 1522 patients 20–70 years of age with newly diagnosed CHB with LC during 1998–2007. Among them, 508 (33.37%) had received CHM products after the onset of CHB (CHM users), and the remaining 1014 patients (66.63%) were designated as a control group (non-CHM users). All enrollees were followed until the end of 2012 to determine deaths during the study period. We applied the Cox proportional hazards regression model to compute the hazard ratio for the association of CHM use and the subsequent risk of death. During the follow-up period, 156 CHM users and 493 non-CHM users died. After controlling for potential confounders, CHM users were found to have a significantly reduced risk of death compared with non-CHM users by 56%, and the effect was predominantly observed among those treated with CHM for \u3e 180 days. CHM therapy lowered the risk of death among CHB patients with contaminant LC, which supported CHM might provide further treatment options for those with chronic liver diseases

    Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen therapy (HBOT) is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS), is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs.</p> <p>Results</p> <p>Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS) was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model.</p> <p>Conclusions</p> <p>The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.</p

    Increased renal ANP synthesis, but decreased or unchanged cardiac ANP synthesis in water-deprived and salt-restricted rats

    Get PDF
    Increased renal ANP synthesis, but decreased or unchanged cardiac ANP synthesis in water-deprived and salt-restricted rats.BackgroundExperiments were performed to examine the effect of water deprivation and salt restriction on ANP synthesis in the kidneys and hearts of normal rats.MethodsA 4-day water deprivation (WD) and 7-day salt restriction (SR; 0.01% NaCl) were performed in 12 and 14 rats, respectively. Atrial natriuretic peptide (ANP) mRNA expression in the kidney was assessed with reverse transcription-polymerase chain reaction coupled with Southern blot hybridization, while the ANP mRNA in the hearts was measured by Northern blot hybridization. ANP and angiotensin II concentrations in the extracted plasma were measured by radioimmunoassay. The molecular form of renal ANP-like protein was characterized by reverse phase—high-performance liquid chromatography (RP-HPLC).ResultsRenal outer and inner medullary ANP mRNA showed a respective 11-fold and ninefold increase in WD rats, and an eightfold and fivefold increase in SR rats as compared to corresponding control groups. Inversely, cardiac atrial ANP mRNA and plasma ANP were decreased in WD rats, whereas they did not change in the SR group. Plasma angiotensin II concentration increased in conjunction with the decrease of urine sodium excretion in both groups. RP-HPLC analysis revealed a 45% extraction of ANP in the WD rat kidneys, whereas only 3% ANP in the control kidneys migrated in a molecular form similar to cardiac atrial proANP.ConclusionsOur results demonstrate that water deprivation and salt restriction markedly enhance renal ANP mRNA, whereas water deprivation suppresses cardiac atrial ANP mRNA and plasma ANP concentrations. The current study indicates that renal ANP and cardiac atrial ANP appear to be two distinct systems regulated by different mechanisms and possibly exhibiting different intra-renal paracrine and systemic endocrine functions

    The Untranslated Regions of Classic Swine Fever Virus RNA Trigger Apoptosis

    Get PDF
    Classical swine fever virus (CSFV) causes a broad range of disease in pigs, from acute symptoms including high fever and hemorrhages, to chronic disease or unapparent infection, depending on the virus strain. CSFV belongs to the genus Pestivirus of the family Flaviviridae. It carries a single-stranded positive-sense RNA genome. An internal ribosomal entry site (IRES) in the 5' untranslated region (UTR) drives the translation of a single open reading frame encoding a 3898 amino acid long polypeptide chain. The open reading frame is followed by a 3' UTR comprising four highly structured stem-loops. In the present study, a synthetic RNA composed of the 5' and 3' UTRs of the CSFV genome devoid of any viral coding sequence and separated by a luciferase gene cassette (designated 5'UTR-Luc-3'UTR) triggered apoptotic cell death as early as 4 h post-transfection. The apoptosis was measured by DNA laddering analysis, TUNEL assay, annexin-V binding determined by flow cytometry, and by analysis of caspase activation. Contrasting with this, only trace DNA laddering was observed in cells transfected with the individual 5' or 3' UTR RNA; even when the 5' UTR and 3' UTR were co-transfected as separate RNA molecules, DNA laddering did not reach the level induced by the chimeric 5'UTR-Luc-3'UTR RNA. Interestingly, RNA composed of the 5'UTR and of stem-loop I of the 3'UTR triggered much stronger apoptosis than the 5' or 3'UTR alone. These results indicate that the 5' and 3' UTRs act together in cis induce apoptosis. We furthered obtained evidence that the UTR-mediated apoptosis required double-stranded RNA and involved translation shutoff possibly through activation of PKR
    corecore