13 research outputs found
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
<p>Abstract</p> <p>Background</p> <p>Biclustering is an important analysis procedure to understand the biological mechanisms from microarray gene expression data. Several algorithms have been proposed to identify biclusters, but very little effort was made to compare the performance of different algorithms on real datasets and combine the resultant biclusters into one unified ranking.</p> <p>Results</p> <p>In this paper we propose differential co-expression framework and a differential co-expression scoring function to objectively quantify quality or goodness of a bicluster of genes based on the observation that genes in a bicluster are co-expressed in the conditions belonged to the bicluster and not co-expressed in the other conditions. Furthermore, we propose a scoring function to stratify biclusters into three types of co-expression. We used the proposed scoring functions to understand the performance and behavior of the four well established biclustering algorithms on six real datasets from different domains by combining their output into one unified ranking.</p> <p>Conclusions</p> <p>Differential co-expression framework is useful to provide quantitative and objective assessment of the goodness of biclusters of co-expressed genes and performance of biclustering algorithms in identifying co-expression biclusters. It also helps to combine the biclusters output by different algorithms into one unified ranking i.e. meta-biclustering.</p
Whole-genome sequencing reveals potent therapeutic strategy for monomorphic epitheliotropic intestinal T-cell lymphoma
10.1182/bloodadvances.2020001782BLOOD ADVANCES4194769-477
Oncogenic activation of the stat3 pathway drives pd-l1 expression in natural killer/t-cell lymphoma
Mature T-cell lymphomas, including peripheral T-cell lymphoma (PTCL) and extranodal NK/T-cell lymphoma (NKTL), represent a heterogeneous group of non-Hodgkin lymphomas with dismal outcomes and limited treatment options. To determine the extent of involvement of the JAK/STAT pathway in this malignancy, we performed targeted capture sequencing of 188 genes in this pathway in 171 PTCL and NKTL cases. A total of 272 nonsynonymous somatic mutations in 101 genes were identified in 73% of the samples, including 258 single-nucleotide variants and 14 insertions or deletions. Recurrent mutations were most frequently located in STAT3 and TP53 (15%), followed by JAK3 and JAK1 (6%) and SOCS1 (4%). A high prevalence of STAT3 mutation (21%) was observed specifically in NKTL. Novel STAT3 mutations (p.D427H, E616G, p.E616K, and p.E696K) were shown to increase STAT3 phosphorylation and transcriptional activity of STAT3 in the absence of cytokine, in which p.E616K induced programmed cell death-ligand 1 (PD-L1) expression by robust binding of activated STAT3 to the PD-L1 gene promoter. Consistent with these findings, PD-L1 was overexpressed in NKTL cell lines harboring hotspot STAT3 mutations, and similar findings were observed by the overexpression of p.E616K and p.E616G in the STAT3 wild-type NKTL cell line. Conversely, STAT3 silencing and inhibition decreased PD-L1 expression in STAT3 mutant NKTL cell lines. In NKTL tumors, STAT3 activation correlated significantly with PD-L1 expression. We demonstrated that STAT3 activation confers high PD-L1 expression, which may promote tumor immune evasion. The combination of PD-1/PD-L1 antibodies and STAT3 inhibitors might be a promising therapeutic approach for NKTL, and possibly PTCL.ASTAR (Agency for Sci., Tech. and Research, S’pore)NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore
Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma
10.1182/blood-2018-01-829424BLOOD132111146-115
Integrative genomic analyses of European intrahepatic cholangiocarcinoma: Novel ROS1 fusion gene and PBX1 as prognostic marker
Abstract Background Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. Methods We describe an integrated whole‐exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. Results We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke‐associated Asian iCCAs. Conclusions By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease