8,056 research outputs found

    Learning to Optimize under Non-Stationarity

    Full text link
    We introduce algorithms that achieve state-of-the-art \emph{dynamic regret} bounds for non-stationary linear stochastic bandit setting. It captures natural applications such as dynamic pricing and ads allocation in a changing environment. We show how the difficulty posed by the non-stationarity can be overcome by a novel marriage between stochastic and adversarial bandits learning algorithms. Defining d,BT,d,B_T, and TT as the problem dimension, the \emph{variation budget}, and the total time horizon, respectively, our main contributions are the tuned Sliding Window UCB (\texttt{SW-UCB}) algorithm with optimal O~(d2/3(BT+1)1/3T2/3)\widetilde{O}(d^{2/3}(B_T+1)^{1/3}T^{2/3}) dynamic regret, and the tuning free bandit-over-bandit (\texttt{BOB}) framework built on top of the \texttt{SW-UCB} algorithm with best O~(d2/3(BT+1)1/4T3/4)\widetilde{O}(d^{2/3}(B_T+1)^{1/4}T^{3/4}) dynamic regret

    The Supersymmetric Standard Models with a Pseudo-Dirac Gluino from Hybrid FF- and DD-Term Supersymmetry Breakings

    Full text link
    We propose the Supersymmetric Standard Models (SSMs) with a pseudo-Dirac gluino from hybrid FF- and DD-term supersymmetry (SUSY) breakings. Similar to the SSMs before the LHC, all the supersymmetric particles in the Minimal SSM (MSSM) obtain the SUSY breaking soft terms from the traditional gravity mediation and have masses within about 1 TeV except gluino. To evade the LHC SUSY search constraints, the gluino also has a heavy Dirac mass above 3 TeV from DD-term SUSY breaking. Interestingly, such a heavy Dirac gluino mass will not induce the electroweak fine-tuning problem. We realize such SUSY breakings via an anomalous U(1)XU(1)_X gauge symmetry inspired from string models. To maintain the gauge coupling unification and increase the Higgs boson mass, we introduce extra vector-like particles. We study the viable parameter space which satisfies all the current experimental constraints, and present a concrete benchmark point. This kind of models not only preserves the merits of pre-LHC SSMs such as naturalness, dark matter, etc, but also solves the possible problems in the SSMs with Dirac gauginos due to the FF-term gravity mediation.Comment: 6 pages,3 figures,revised versio

    Robust Intrinsic Ferromagnetism and Half Semiconductivity in Stable Two-Dimensional Single-Layer Chromium Trihalides

    Full text link
    Two-dimensional (2D) intrinsic ferromagnetic (FM) semiconductors are crucial to develop low-dimensional spintronic devices. Using density functional theory, we show that single-layer chromium trihalides (SLCTs) (CrX3_3,X=F, Cl, Br and I) constitute a series of stable 2D intrinsic FM semiconductors. A free-standing SLCT can be easily exfoliated from the bulk crystal, due to a low cleavage energy and a high in-plane stiffness. Electronic structure calculations using the HSE06 functional indicate that both bulk and single-layer CrX3_3 are half semiconductors with indirect gaps and their valence bands and conduction bands are fully spin-polarized in the same spin direction. The energy gaps and absorption edges of CrBr3_3 and CrI3_3 are found to be in the visible frequency range, which implies possible opt-electronic applications. Furthermore, SLCTs are found to possess a large magnetic moment of 3μB\mu_B per formula unit and a sizable magnetic anisotropy energy. The magnetic exchange constants of SLCTs are then extracted using the Heisenberg spin Hamiltonian and the microscopic origins of the various exchange interactions are analyzed. A competition between a near 90^\circ FM superexchange and a direct antiferromagnetic (AFM) exchange results in a FM nearest-neighbour exchange interaction. The next and third nearest-neighbour exchange interactions are found to be FM and AFM respectively and this can be understood by the angle-dependent extended Cr-X-X-Cr superexchange interaction. Moreover, the Curie temperatures of SLCTs are also predicted using Monte Carlo simulations and the values can further increase by applying a biaxial tensile strain. The unique combination of robust intrinsic ferromagnetism, half semiconductivity and large magnetic anisotropy energies renders the SLCTs as promising candidates for next-generation semiconductor spintronic applications.Comment: 12 pages, 14 figures. published in J. Mater. Chem.
    corecore