9,491 research outputs found

    Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits

    Full text link
    Tight confinement of light in photonic cavities provides an efficient template for the realization of high optical intensity with strong field gradients. Here we present such a nanoscale resonator device based on a one-dimensional photonic crystal slot cavity. Our design allows for realizing highly localized optical modes with theoretically predicted Q factors in excess of 106. The design is demonstrated experimentally both in a high-contrast refractive index system (silicon), as well as in medium refractive index contrast devices made from aluminum nitride. We achieve extinction ratio of 21dB in critically coupled resonators using an on-chip readout platform with loaded Q factors up to 33,000. Our approach holds promise for realizing ultra-small opto-mechanical resonators for high-frequency operation and sensing applications

    Cavity piezooptomechanics: piezoelectrically excited, optically transduced optomechanical resonators

    Full text link
    We present a monolithic integrated aluminum nitride (AlN) optomechanical resonator in which the mechanical motion is actuated by piezoelectric force and the displacement is transduced by a high-Q optical cavity. The AlN optomechanical resonator is excited from a radio-frequency electrode via a small air gap to eliminate resonator-to-electrode loss. We observe the electrically excited mechanical motion at 47.3 MHz, 1.04 GHz, and 3.12 GHz, corresponding to the 1st, 2nd, and 4th radial-contour mode of the wheel resonator respectively. An equivalent circuit model is developed to describe the observed Fano-like resonance spectrum

    Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics

    Full text link
    Silicon photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, silicon is limited to wavelengths above 1100 nm and does not allow device operation in the visible spectrum range where low noise lasers are conveniently available. The narrow band gap of silicon also makes silicon optomechanical devices susceptible to strong two-photon absorption and free carrier absorption, which often introduce strong thermal effect that limit the devices' stability and cooling performance. Further, silicon also does not provide the desired lowest order optical nonlinearity for interfacing with other active electrical components on a chip. On the other hand, aluminum nitride (AlN) is a wideband semiconductor widely used in micromechanical resonators due to its low mechanical loss and high electromechanical coupling strength. Here we report the development of AlN-on-silicon platform for low loss, wideband optical guiding, as well as its use for achieving simultaneous high optical quality and mechanical quality optomechanical devices. Exploiting AlN's inherent second order nonlinearity we further demonstrate electro-optic modulation and efficient second-harmonic generation in AlN photonic circuits. Our results suggest that low cost AlN-on-silicon photonic circuits are excellent substitutes for CMOS-compatible photonic circuits for building new functional optomechanical devices that are free from carrier effects
    corecore