14,320 research outputs found

    Unusual Coupling Between Field-induced Spin Fluctuations and Spin Density Wave in Intermetallic CeAg2Ge2

    Full text link
    We report on the experimental evidences for an unusual coupling between the magnetic field- induced fluctuations of correlated Ce-ions coinciding with the discontinuous movement of the underlying spin density wave in the intermetallic rare earth compound CeAg2Ge2. The measurements performed using neutron scattering and magnetic Gruneisen ratio methods suggest that the coupling onsets at H= 2.7 T, T < 3.8 K and persists to the lowest measurement temperature T ~ 0.05 K. These measurements suggest a new mechanism behind the spin fluctuations which can affect the intrinsic properties of the system.Comment: 4 pages, 4 figures, Strongly correlated electrons syste

    Determination of the Spin-Hall-Effect-Induced and the Wedged-Structure-Induced Spin Torque Efficiencies in Heterostructures with Perpendicular Magnetic Anisotropy

    Get PDF
    We report that by measuring current-induced hysteresis loop shift versus in-plane bias magnetic field, the spin Hall effect (SHE) contribution of the current-induced effective field per current density, χSHE\chi_{SHE}, can be estimated for Pt and Ta-based magnetic heterostructures with perpendicular magnetic anisotropy (PMA). We apply this technique to a Pt-based sample with its ferromagnetic (FM) layer being wedged-deposited and discover an extra effective field contribution, χWedged\chi_{Wedged}, due to the asymmetric nature of the deposited FM layer. We confirm the correlation between χWedged\chi_{Wedged} and the asymmetric depinning process in FM layer during magnetization switching by magneto-optical Kerr (MOKE) microscopy. These results indicate the possibility of engineering deterministic spin-orbit torque (SOT) switching by controlling the symmetry of domain expansion through the materials growth process

    Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species

    Full text link
    We present a general phase-field model for grain-boundary grooving and agglomeration of polycrystalline alloy thin films. In particular, we study the effects of slow-diffusing species on grooving rate. As the groove grows, the slow species becomes concentrated near the groove tip so that further grooving is limited by the rate at which it diffuses away from the tip. At early times the dominant diffusion path is along the boundary, while at late times it is parallel to the substrate. This change in path strongly affects the time-dependence of grain boundary grooving and increases the time to agglomeration. The present model provides a tool for agglomeration-resistant thin film alloy design. keywords: phase-field, thermal grooving, diffusion, kinetics, metal silicidesComment: 4 pages, 6 figure

    Scanning tunneling spectroscopy of superconducting LiFeAs single crystals: Evidence for two nodeless energy gaps and coupling to a bosonic mode

    Full text link
    The superconducting compound, LiFeAs, is studied by scanning tunneling microscopy and spectroscopy. A gap map of the unreconstructed surface indicates a high degree of homogeneity in this system. Spectra at 2 K show two nodeless superconducting gaps with Δ1=5.3±0.1\Delta_1=5.3\pm0.1 meV and Δ2=2.5±0.2\Delta_2=2.5\pm0.2 meV. The gaps close as the temperature is increased to the bulk TcT_c indicating that the surface accurately represents the bulk. A dip-hump structure is observed below TcT_c with an energy scale consistent with a magnetic resonance recently reported by inelastic neutron scattering
    • …
    corecore