7,341 research outputs found

    Photovoltage Detection of Edge Magnetoplasmon Oscillations and Giant Magnetoplasmon Resonances in A Two-Dimensional Hole System

    Full text link
    In our high mobility p-type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B-periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5 - 40 GHz), the period ({\Delta}B) is inversely proportional to the microwave frequency (f). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. In our hole sample with a very large effective mass, the observation of the EMP oscillations is in neither the low frequency limit nor the high frequency limit, and the damping of the EMP oscillations is very weak under high magnetic fields. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS)

    Landau quantization effects in the charge-density-wave system (Per)2M_2M(mnt)2_2 (where M=M=Au and Pt)

    Full text link
    A finite transfer integral tat_a orthogonal to the conducting chains of a highly one-dimensional metal gives rise to empty and filled bands that simulate an indirect-gap semiconductor upon formation of a commensurate charge-density-wave (CDW). In contrast to semiconductors such as Ge and Si with bandgaps ∼1\sim 1 eV, the CDW system possesses an indirect gap with a greatly reduced energy scale, enabling moderate laboratory magnetic fields to have a major effect. The consequent variation of the thermodynamic gap with magnetic field due to Zeeman splitting and Landau quantization enables the electronic bandstructure parameters (transfer integrals, Fermi velocity) to be determined accurately. These parameters reveal the orbital quantization limit to be reached at ∼20\sim 20 T in (Per)2M_2M(mnt)2_2 salts, making them highly unlikely candidates for a recently-proposed cascade of field-induced charge-density wave states

    Enhancement of the ν=5/2\nu = 5/2 Fractional Quantum Hall State in a Small In-Plane Magnetic Field

    Get PDF
    Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied the Landau level filling factor ν=5/2\nu = 5/2 fractional quantum Hall effect in a perpendicular magnetic field B∼B \sim 1.7 T and determined its dependence on tilted magnetic fields. Contrary to all previous results, the 5/2 resistance minimum and the Hall plateau are found to strengthen continuously under an increasing tilt angle 0<θ<25∘0 < \theta < 25^\circ (corresponding to an in-plane magnetic field 0 << B∥B_\parallel <0.8< 0.8 T). In the same range of θ\theta the activation gaps of both the 7/3 and the 8/3 states are found to increase with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt angle θ>60∘\theta > 60^\circ, and the composite fermion series [2+p/(2p±1)p/(2p\pm1)], p=p = 1, 2 can be identified. Based on our results, we discuss the relevance of a Skyrmion spin texture at ν=5/2\nu = 5/2 associated with small Zeeman energy in wide quantum wells, as proposed by Woˊ\acute{\text o}js etet alal., Phys. Rev. Lett. 104, 086801 (2010).Comment: 5+ pages, 3 figures, accepted for by Phy. Rev. Let
    • …
    corecore