32 research outputs found

    Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection

    Get PDF
    Scanning probe microscopy (SPM) is a powerful tool to study the structure and dynamics of molecules at surfaces and interfaces as well as to precisely manipulate atoms and molecules by applying an external force, by inelastic electron tunneling, or by means of an electric field. The rapid development of these SPM manipulation modes made it possible to achieve fine‐control over fundamental processes in the physics of interfaces as well as chemical reactivity, such as adsorption, diffusion, bond formation, and bond dissociation with precision at the single atom/molecule level. Their controlled use for the fabrication of atomic‐scale structures and synthesis of new, perhaps uncommon, molecules with programmed properties are reviewed. Opportunities and challenges towards the development of complex chemical systems are discussed, by analyzing potential future impacts in nanoscience and nanotechnology.journal articlereview2019 Dec 192019 11 28importe

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

    Get PDF
    About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species

    The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard

    No full text
    The Asia Oceania Human Proteome Organisation (AOHUPO) has embarked on a Membrane Proteomics Initiative with goals of systematic comparison of strategies for analysis of membrane proteomes and discovery of membrane proteins. This multilaboratory project is based on the analysis of a subcellular fraction from mouse liver that contains endoplasmic reticulum and other organelles. In this study, we present the strategy used for the preparation and initial characterization of the membrane sample, including validation that the carbonate-washing step enriches for integral and lipid-anchored membrane proteins. Analysis of 17 independent data sets from five types of proteomic workflows is in progress.7 page(s
    corecore