4 research outputs found

    Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest

    Get PDF
    Vegetation coverage variation may influence watershed water balance and water resource availability. Yarlung Zangbo River, the longest river on the Tibetan Plateau, has high spatial heterogeneity in vegetation coverage and is the main freshwater resource of local residents and downstream countries. In this study, we proposed a model based on random forest (RF) to predict the Normalized Difference Vegetation Index (NDVI) of the Yarlung Zangbo River Basin and explore its relationship with climatic factors. High-resolution datasets of NDVI and monthly meteorological observation data from 2000 to 2015 were used to calibrate and validate the proposed model. The proposed model was then compared with artificial neural network and support vector machine models, and principal component analysis and partial correlation analysis were also used for predictor selection of artificial neural network and support vector machine models for comparative study. The results show that RF had the highest model efficiency among the compared models. The Nash–Sutcliffe coefficients of the proposed model in the calibration period and verification period were all higher than 0.8 for the five subzones; this indicated that the proposed model can successfully simulate the relationship between the NDVI and climatic factors. By using built-in variable importance evaluation, RF chose appropriate predictor combinations without principle component analysis or partial correlation analysis. Our research is valuable because it can be integrated into water resource management and elucidates ecological processes in Yarlung Zangbo River Basin

    Multiple time scale analysis of sediment and runoff changes in the Lower Yellow River

    Get PDF
    Sediment and runoff changes of seven hydrological stations along the Lower Yellow River (LYR) (Huayuankou Station, Jiahetan Station, Gaocun Station, Sunkou Station, Ai Shan Station, Qikou Station and Lijin Station) from 1980 to 2003 were alanyzed at multiple time scale. The maximum value of monthly, daily and hourly sediment load and runoff conservations were also analyzed with the annually mean value. Mannā€“Kendall non-parametric mathematics correlation test and Hurst coefficient method were adopted in the study. Research results indicate that (1)Ā the runoff of seven hydrological stations was significantly reduced in the study period at different time scales. However, the trends of sediment load in these stations were not obvious. The sediment load of Huayuankou, Jiahetan and Aishan stations even slightly increased with the runoff decrease. (2)Ā The trends of the sediment load with different time scale showed differences at Luokou and Lijin stations. Although the annually and monthly sediment load were broadly flat, the maximum hourly sediment load showed decrease trend. (3)Ā According to the Hurst coefficients, the trend of sediment and runoff will be continue without taking measures, which proved the necessary of runoff-sediment regulation scheme

    Incipient ferroelectrics:Anomalous T-1 behaviors and their rotor interpretation

    No full text
    The quantum temperature (denoted by T1) behaviors of three typical incipient ferroelectrics, SrTiO 3, KTaO 3 and CaTiO 3, are studied. This quantity is argued to serve fundamentally in identifying the nature of the local mode responsible for the dielectric responses. Our main findings are as follows. For all compounds, T1 saturates at low temperatures. For CaTiO 3, T1 monotonically increases with temperature and no clear saturation is discernible at high temperatures. For KTaO 3, similar behaviors are observed but with a little twist: a dip shows up around 35 K, above which T1 increases but below it T1 decreases with temperature. Although it is hardly seeable in this compound, this dip might mark a transition, whose nature is unclear for the moment. In parallel with KTiO 3, SrTiO 3 also has a dip, which is much stronger and broader. It happens around 105 K, at which the famous anti-ferrodistortive (AFD) transition occurs. Were it not for this dip, T1 would drop to zero in SrTiO 3 at low temperatures and the ferroelectric (FE) transition would take place. The dip halts the drop and makes T1 rise up to a value that is enough to stabilize the FE instability. In this respect, the dip is essential in preventing the FE transition in SrTiO 3. Since the dip and the AFD transition occur at roughly the same temperature, we attempt to ascribe the former to the latter. This ascription is compatible with previous work [A. Yamanaka, M. Kataoka, Y. Inaba, K. Inoue, B. Hehlen, E. Courtens, Europhys. Lett., 50:(2000) 688]. To interpret the T1 behaviors, we utilize an anisotropic rotor model, according to which the local variable is supposed to move on a non-uniform sphere. By tuning the anisotropy parameter, Ļ…, qualitative agreement can be achieved. Especially, a single Ļ…ā‰ˆ100 can fit the T1 of CaTiO 3 over the entire temperature range under consideration, whereas the fitting for KTaO 3 requires two different Ļ…, namely, Ļ…ā‰ˆ260 above the dip temperature and Ļ…ā‰ˆ40 below it. Analogously, two Ļ… are also required for SrTiO 3. Below the dip temperature, a very good fitting can be obtained with Ļ…ā‰ˆ40. We did not try to fit the high temperature data of SrTiO 3, because the data in this range are scarce and inaccurate. Nevertheless, we believe that a different and bigger Ļ… should be at work, considering the case with KTaO 3. Assuming the AFD transition as the cause of the dip in SrTiO 3, we may claim that, the true role of the AFD transition in stabilizing the FE instability is to reduce the Ļ… and then enhance quantum fluctuations.Department of Applied Physic
    corecore