14,982 research outputs found

    Boundary Condition of Polyelectrolyte Adsorption

    Full text link
    The modification of the boundary condition for polyelectrolyte adsorption on charged surface with short-ranged interaction is investigated under two regimes. For weakly charged Gaussian polymer in which the short-ranged attraction dominates, the boundary condition is the same as that of the neutral polymer adsorption. For highly charged polymer (compressed state) in which the electrostatic interaction dominates, the linear relationship (electrostatic boundary condition) between the surface monomer density and the surface charge density needs to be modified.Comment: 4 page

    Anatomy of Zero-norm States in String Theory

    Full text link
    We calculate and identify the counterparts of zero-norm states in the old covariant first quantised (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely the light-cone DDF zero-norm states and the off-shell BRST zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attention is paid to the inter-particle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no ghost conditions and recover exactly two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two types of zero-norm states in the generalized massive sigma-model approach of string theory. The high energy limit of these stringy gauge symmetries was recently used to calculate the proportionality constants, conjectured by Gross, among high energy scattering amplitudes of different string states. Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-energy stringy symmetry of Gross.Comment: 30 page

    Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species

    Full text link
    We present a general phase-field model for grain-boundary grooving and agglomeration of polycrystalline alloy thin films. In particular, we study the effects of slow-diffusing species on grooving rate. As the groove grows, the slow species becomes concentrated near the groove tip so that further grooving is limited by the rate at which it diffuses away from the tip. At early times the dominant diffusion path is along the boundary, while at late times it is parallel to the substrate. This change in path strongly affects the time-dependence of grain boundary grooving and increases the time to agglomeration. The present model provides a tool for agglomeration-resistant thin film alloy design. keywords: phase-field, thermal grooving, diffusion, kinetics, metal silicidesComment: 4 pages, 6 figure

    Unusual Coupling Between Field-induced Spin Fluctuations and Spin Density Wave in Intermetallic CeAg2Ge2

    Full text link
    We report on the experimental evidences for an unusual coupling between the magnetic field- induced fluctuations of correlated Ce-ions coinciding with the discontinuous movement of the underlying spin density wave in the intermetallic rare earth compound CeAg2Ge2. The measurements performed using neutron scattering and magnetic Gruneisen ratio methods suggest that the coupling onsets at H= 2.7 T, T < 3.8 K and persists to the lowest measurement temperature T ~ 0.05 K. These measurements suggest a new mechanism behind the spin fluctuations which can affect the intrinsic properties of the system.Comment: 4 pages, 4 figures, Strongly correlated electrons syste

    Exactness of the Original Grover Search Algorithm

    Full text link
    It is well-known that when searching one out of four, the original Grover's search algorithm is exact; that is, it succeeds with certainty. It is natural to ask the inverse question: If we are not searching one out of four, is Grover's algorithm definitely not exact? In this article we give a complete answer to this question through some rationality results of trigonometric functions.Comment: 8 pages, 2 figure

    Doping Dependence of Spin Dynamics in Electron-Doped Ba(Fe1-xCox)2As2

    Full text link
    The spin dynamics in single crystal, electron-doped Ba(Fe1-xCox)2As2 has been investigated by inelastic neutron scattering over the full range from undoped to the overdoped regime. We observe damped magnetic fluctuations in the normal state of the optimally doped compound (x=0.06) that share a remarkable similarity with those in the paramagnetic state of the parent compound (x=0). In the overdoped superconducting compound (x=0.14), magnetic excitations show a gap-like behavior, possibly related to a topological change in the hole Fermi surface (Lifshitz transition), while the imaginary part of the spin susceptibility prominently resembles that of the overdoped cuprates. For the heavily overdoped, non-superconducting compound (x=0.24) the magnetic scattering disappears, which could be attributed to the absence of a hole Fermi-surface pocket observed by photoemission.Comment: 6 pages, 5 figures, published versio
    • …
    corecore