293 research outputs found

    Age determination of eels in the French Mediterranean lagoons using classical methods and an image analysis system

    Get PDF
    Several methods are used for age determination of eels in the French mediterranean lagoons (observation of the whole otolith after clearing, grinding and polishing, dyeing, SEM and image analysis). Two types of otoliths are observed depending on the width of the growth rings which is probably related to the environmental conditions. Furthermore, the growth checks are located nearby or inside the opaque rings. A computer assisted method is developed, with reference to the other methods, with the aim of improving the efficiency of collecting and processing age and growth data. With further developments and increasing knowledge of life-history of elvers and juvenile eels, it seems possible to use an image analysis system for ageing eels in lagoons. Nevertheless, the most important point is to validate the results before using them for growth populations studies. (Résumé d'auteur

    Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp strain TS-23 alpha-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity

    Get PDF
    Bacillus stearothermophilus leucine aminopeptidase 11 (LAPII) was fused at its C-terminal end with the raw-starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase. The chimeric enzyme (LAPsbd), with an apparent molecular mass of approximately 61 kDa, was overexpressed in IPTG-induced Escherichia coli cells and purified to homogeneity by nickel-chelate chromatography. The purified enzyme retained LAP activity and adsorbed raw starch. LAPsbd was stable at 70degreesC for 10 min, while the activity of wild-type enzyme was completely abolished under the same environmental condition. Compared with the wild-type enzyme, the twofold increase in the catalytic efficiency for LAPsbd was due to a 218% increase in the k(cat) value

    Construction and one-step purification of Bacillus kaustophilus leucine aminopeptidase fused to the starch-binding domain of Bacillus sp strain TS-23 alpha-amylase

    Get PDF
    The starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase was introduced into the C-terminal end of Bacillus kaustophilus leucine aminopeptidase (BkLAP) to generate a chimeric enzyme (BkLAPsbd) with raw-starch-binding activity. BkLAPsbd, with an apparent molecular mass of approximately 65 kDa, was overexpressed in Escherichia coli M15 cells and purified to homogeneity by nickel-chelate chromatography. Native PAGE and chromatographic analyses revealed that the purified fusion protein has a hexameric structure. The half-life for BkLAPsbd was 12 min at 70 degrees C, while less than 20% of wild-type enzyme activity retained at the same heating condition. Compared with the wild-type enzyme, the 60% decrease in the catalytic efficiency of BkLAPsbd was due to a 91% increase in K-m value. Starch-binding assays showed that the K-d and B-max values for the fusion enzyme were 2.3 mu M and 0.35 mu mol/g, respectively. The adsorption of the crude BkLAPsbd onto raw starch was affected by starch concentration, pH, and temperature. The adsorbed enzyme could be eluted from the adsorbent by 2% soluble starch in 20 mM Tris-HCl buffer (pH 8.0). About 49% of BkLAPsbd in the crude extract was recovered through one adsorption-elution cycle with a purification of 11.4-fold

    Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp strain TS-23 alpha-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity

    Get PDF
    Bacillus stearothermophilus leucine aminopeptidase 11 (LAPII) was fused at its C-terminal end with the raw-starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase. The chimeric enzyme (LAPsbd), with an apparent molecular mass of approximately 61 kDa, was overexpressed in IPTG-induced Escherichia coli cells and purified to homogeneity by nickel-chelate chromatography. The purified enzyme retained LAP activity and adsorbed raw starch. LAPsbd was stable at 70degreesC for 10 min, while the activity of wild-type enzyme was completely abolished under the same environmental condition. Compared with the wild-type enzyme, the twofold increase in the catalytic efficiency for LAPsbd was due to a 218% increase in the k(cat) value

    Generating oxidation-resistant variants of Bacillus kaustophilus leucine aminopeptidase by substitution of the critical methionine residues with leucine

    Get PDF
    Bacillus kaustophilus leucine aminopeptidase (bkLAP) was sensitive to oxidative damage by hydrogen peroxide. To improve its oxidative stability, the oxidation-sensitive methionine residues in the enzyme were replaced with leucine by site-directed mutagenesis. The variants, each with an apparent molecular mass of approximately 54 kDa, were overexpressed in recombinant Escherichia coli M15 cells and purified to homogeneity by nickel-chelate chromatography. The specific activity for M282L, M285L, M289L and M321L decreased by more than 43%, while M400L, M426L, M445L, and M485L showed 191, 79, 313, and 103%, respectively, higher activity than the wild-type enzyme. Although the mutations did not cause significant changes in the K-m value, more than 67.8% increase in the value of k(cat)/K-m was observed in the M400L, M426L, M445L and M485L. In the presence of 50 mM H2O2 most variants were more stable with respect to the wild-type enzyme, indicating that the oxidative stability of the enzyme can be improved by engineering the methionine residues

    A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223

    Get PDF
    Two degenerate primers established from the consensus sequences of bacterial leucine aminopeptidases (LAP) were used to amplify a 360-bp gene fragment from the chromosomal DNA of thermophilic Bacillus kaustophilus CCRC 11223 and the amplified fragment was successfully used as a probe to clone a leucine aminopeptidase (lap) gene from a genomic library of the strain. The gene consists of an open reading frame (ORF) of 1,494 bp and encodes a protein of 497 amino acid residues with a calculated molecular mass of 53.7 kDa. The complete amino acid sequence of the cloned enzyme showed greater than 30% identity with prokaryotic and eukaryotic LAPs. Phylogenetic analysis showed that B. kaustophilus LAP is closely related to the enzyme from Bacillus subtilis and is grouped with the M17 family. His(6)-tagged LAP was generated in Escherichia coli by cloning the coding region into pQE-30 and the recombinant enzyme was purified by nickel-chelate chromatography. The pH and temperature optima for the purified enzyme were 8 and 65degreesC, respectively, and 50% of its activity remained after incubation at 60degreesC for 32 min. The enzyme preferentially hydrolyzed L-leucine-p-nitroanilide (L-Leu-p-NA) followed by Cys derivative

    Identification of essential histidine residues in a recombinant alpha-amylase of thermophilic and alkaliphilic Bacillus sp strain TS-23

    Get PDF
    To understand the structure-function relationships of a truncated Bacillus sp. strain TS-23 alpha-amylase, each of His-137, His-191, His-239, His-269, His-305, His-323, His-361, His-436, and His-475 was replaced with leucine. The molecular masses of the purified wild-type and mutant enzymes were approximately 54 kDa. The specific activity of His323Leu and His436Leu was decreased by more than 52%, while His239Leu, His305Leu, and His475Leu showed activity similar to that of the wild-type enzyme. As compared with the wild-type enzyme, His323Leu and His436Leu exhibited a 62% decrease in the value of k(cat)/K-m. Alterations in His-191, His-239, His-305, and His-475 did not cause a significant change in the K-m or k(cat) values. At 70degreesC, a decreased half-life was observed in His436Leu. These results indicate that His-137, His-269, and His-361 of Bacillus sp. strain TS-23 alpha-amylase are important for proper catalytic activity and that His-436 may contribute to the thermostability of the enzyme

    Saliva sampling method influences oral microbiome composition and taxa distribution associated with oral diseases

    Get PDF
    Saliva is a readily accessible and inexpensive biological specimen that enables investigation of the oral microbiome, which can serve as a biomarker of oral and systemic health. There are two routine approaches to collect saliva, stimulated and unstimulated; however, there is no consensus on how sampling method influences oral microbiome metrics. In this study, we analyzed paired saliva samples (unstimulated and stimulated) from 88 individuals, aged 7-18 years. Using 16S rRNA gene sequencing, we investigated the differences in bacterial microbiome composition between sample types and determined how sampling method affects the distribution of taxa associated with untreated dental caries and gingivitis. Our analyses indicated significant differences in microbiome composition between the sample types. Both sampling methods were able to detect significant differences in microbiome composition between healthy subjects and subjects with untreated caries. However, only stimulated saliva revealed a significant association between microbiome diversity and composition in individuals with diagnosed gingivitis. Furthermore, taxa previously associated with dental caries and gingivitis were preferentially enriched in individuals with each respective disease only in stimulated saliva. Our study suggests that stimulated saliva provides a more nuanced readout of microbiome composition and taxa distribution associated with untreated dental caries and gingivitis compared to unstimulated saliva

    Variable Modified Chaplygin Gas in Anisotropic Universe with Kaluza-Klein Metric

    Full text link
    In this work, we have consider Kaluza-Klein Cosmology for anisotropic universe where the universe is filled with variable modified chaplygin gas (VMCG). Here we find normal scalar field ϕ\phi and the self interacting potential V(ϕ)V(\phi) to describe the VMCG Cosmology. Also we graphically analyzed the geometrical parameters named {\it statefinder parameters} in anisotropic Kaluza-Klein model. Next, we consider a Kaluza-Klein model of interacting VMCG with dark matter in the Einstein gravity framework. Here we construct the three dimensional autonomous dynamical system of equations for this interacting model with the assumption that the dark energy and the dark matter are interact between them and for that we also choose the interaction term. We convert that interaction terms to its dimensionless form and perform stability analysis and solve them numerically. We obtain a stable scaling solution of the equations in Kaluza-Klein model and graphically represent solutions.Comment: 11 pages, 13 figure

    Effects of C-Terminal Truncation on Autocatalytic Processing of Bacillus licheniformis gamma-Glutamyl Transpeptidase

    Get PDF
    The role of the C-terminal region of Bacillus licheniformis gamma-glutamyl transpeptidase (BlGGT) was investigated by deletion analysis. Seven C-terminally truncated BlGGTs lacking 581-585, 577-585, 576-585, 566-585, 558-585, 523-585, and 479-585 amino acids, respectively, were generated by site-directed mutagenesis. Deletion of the last nine amino acids had no appreciable effect on the autocatalytic processing of the enzyme, and the engineered protein was active towards the synthetic substrate L-gamma-glutamyl-p-nitroanilide. However, a further deletion to Val576 impaired the autocatalytic processing. In vitro maturation experiments showed that the truncated BlGGT precursors, pro-Delta (576-585), pro-Delta (566-585), and pro-Delta(558-585), could partially precede a time-dependent autocatalytic process to generate the L- and S-subunits, and these proteins showed a dramatic decrease in catalytic activity with respect to the wild-type enzyme. The parental enzyme (BlGGT-4aa) and BlGGT were unfolded biphasically by guanidine hydrochloride (GdnCl), but Delta(577-585), Delta(576-585), Delta(566-585), Delta(558-585), Delta(523-585), and Delta(479-585) followed a monophasic unfolding process and showed a sequential reduction in the GdnCl concentration corresponding to half effect and. Delta G(0) for the unfolding. BlGGT-4aa and BlGGT sedimented at similar to 4.85 S and had a heterodimeric structure of approximately 65.23 kDa in solution, and this structure was conserved in all of the truncated proteins. The frictional ratio (f/f(o)) of BlGGT-4aa, BlGGT, Delta(581-585), and Delta(577-585) was 1.58, 1.57, 1.46, and 1.39, respectively, whereas the remaining enzymes existed exclusively as precursor form with a ratio of less than 1.18. Taken together, these results provide direct evidence for the functional role of the C-terminal region in the autocatalytic processing of BlGGT
    • 

    corecore