25 research outputs found

    Neutrino masses from beta decays after KamLAND and WMAP (Updated including the NC enhanced SNO data)

    Full text link
    The first data released by the KamLAND collaboration have confirmed the strong evidence in favour of the LMA solution of the solar neutrino problem. Taking into account the ranges for the oscillation parameters allowed by the global analysis of the solar, CHOOZ and KamLAND data, we update the limits on the neutrinoless double beta decay effective neutrino mass parameter and analyze the impact of all the available data from neutrinoless double beta decay experiments on the neutrino mass bounds, in view of the latest WMAP results. For the normal neutrino mass spectrum the range (0.05-0.23) eV is obtained for the lightest neutrino mass if one takes into account the Heidelberg-Moscow evidence for neutrinoless double beta decay and the cosmological bound. It is also shown that under the same conditions the mass of the lightest neutrino may not be bounded from below if the spectrum is of the inverted type. Finnaly, we discuss how future experiments can improve the present bounds on the lightest neutrino mass set by the Troitsk, Mainz and WMAP results. In the addendum we update the allowed ranges for the effective Majorana neutrino mass parameter in view of the latest NC enhanced SNO data.Comment: Updated including the recent NC enhanced SNO data. Refferences added and typos correcte

    Ocular anti-VEGF therapy for diabetic retinopathy: Overview of clinical efficacy and evolving applications

    Get PDF
    10.2337/dc13-1990Diabetes Care374900-905DICA

    Balanced steady-state free precession fMRI with intravascular susceptibility contrast agent

    No full text
    One major challenge in echo planar imaging-based functional MRI (fMRI) is the susceptibility-induced image distortion. In this study, a new cerebral blood volume-weighted fMRI technique using distortion-free balanced steady-state free precession (bSSFP) sequence was proposed and its feasibility was investigated in rat brain at 7 Tesla. After administration of intravascular susceptibility contrast agent (monocrystalline iron oxide nanoparticle [MION] at 15 mg/kg), unilateral visual stimulation was presented using a block-design paradigm. With repetition time/echo time = 3.8/1.9 ms and α = 18°, bSSFP fMRI was performed and compared with the conventional cerebral blood volume-weighted fMRI using post-MION gradient echo and spin echo echo planar imaging. The results showed that post-MION bSSFP fMRI provides comparable sensitivity but with no severe image distortion and signal dropout. Robust negative responses were observed during stimulation and activation patterns were in excellent agreement with known neuroanatomy. Furthermore, the post-MION bSSFP signal was observed to decrease significantly during hypercapnia challenge, indicating its sensitivity to cerebral blood volume changes. These findings demonstrated that post-MION bSSFP fMRI is a promising alternative to conventional cerebral blood volume-weighted fMRI. This technique is particularly suited for fMRI investigation of animal models at high field. © 2011 Wiley Periodicals, Inc

    BOLD responses in the superior colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus

    No full text
    In rats, the superior colliculus (SC) is a main destination for retinal ganglion cells and is an important subcortical structure for vision. Electrophysiology studies have observed that many SC neurons are highly sensitive to moving objects, but complementary non-invasive functional imaging studies with larger fields of view have been rarely conducted. In this study, BOLD fMRI is used to measure the SC and nearby lateral geniculate nucleus' (LGN) hemodynamic responses, in normal adult Sprague Dawley (SD) rats, during a dynamic visual stimulus similar to those used in long-range apparent motion studies. The stimulation paradigm consists of four light spots arranged in a linear array and turned on and off sequentially at different rates to create five effective speeds of motion (7, 14, 41, 82, and 164°/s across the visual field). Stationary periods (same light spot always on) are interleaved between the moving periods. The speed response function (SRF), the hemodynamic response amplitude at each speed tested, is measured. Significant responses are observed in the SC and LGN at all speeds. In the SC, the SRF increases monotonically from 7 to 82°/s. The minimum response amplitude occurs at 164°/s. The results suggest that the SC is sensitive to slow moving visual stimuli but the hemodynamic response is reduced at higher speeds. In the LGN, the SRF exhibits a similar trend to that of the SC, but response amplitude during 7°/s stimulation is comparable to that during 164°/s stimulation. These findings are in good agreement with previous electrophysiology studies conducted on albino rats like the SD strain. This work represents the first fMRI study of stimulus speed dependence in the SC and is also the first fMRI study of motion responsiveness in the rat. © 2011 Elsevier Inc

    Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system

    No full text
    Intensity is an important physical property of a sound wave and is customarily reported as sound pressure level (SPL). Invasive techniques such as electrical recordings, which typically examine one brain region at a time, have been used to study neuronal encoding of SPL throughout the central auditory system. Non-invasive functional magnetic resonance imaging (fMRI) with large field of view can simultaneously examine multiple auditory structures. We applied fMRI to measure the hemodynamic responses in the rat brain during sound stimulation at seven SPLs over a 72. dB range. This study used a sparse temporal sampling paradigm to reduce the adverse effects of scanner noise. Hemodynamic responses were measured from the central nucleus of the inferior colliculus (CIC), external cortex of the inferior colliculus (ECIC), lateral lemniscus (LL), medial geniculate body (MGB), and auditory cortex (AC). BOLD signal changes generally increase significantly (p < 0.001) with SPL and the dependence is monotonic in CIC, ECIC, and LL. The ECIC has higher BOLD signal change than CIC and LL at high SPLs. The difference between BOLD signal changes at high and low SPLs is less in the MGB and AC. This suggests that the SPL dependences of the LL and IC are different from those in the MGB and AC and the SPL dependence of the CIC is different from that of the ECIC. These observations are likely related to earlier observations that neurons with firing rates that increase monotonically with SPL are dominant in the CIC, ECIC, and LL while non-monotonic neurons are dominant in the MGB and AC. Further, the IC's SPL dependence measured in this study is very similar to that measured in our earlier study using the continuous imaging method. Therefore, sparse temporal sampling may not be a prerequisite in auditory fMRI studies of the IC. © 2012 Elsevier Inc.

    High fidelity tonotopic mapping using swept source functional magnetic resonance imaging

    No full text
    Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~. 2. kHz resolution and 40. kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy. © 2012 Elsevier Inc

    BOLD fMRI investigation of the rat auditory pathway and tonotopic organization

    No full text
    Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampling). The cochlear nucleus (CN), superior olivary complex, lateral lemniscus, inferior colliculus (IC), medial geniculate body and primary auditory cortex, all major auditory structures, are activated by broadband stimulation. The CN and IC BOLD signal changes increase monotonically with sound pressure level. Pure tone stimulation with three distinct frequencies (7, 20 and 40. kHz) reveals the tonotopic organization of the IC. The activated regions shift from dorsolateral to ventromedial IC with increasing frequency. These results agree with electrophysiology and immunohistochemistry findings, indicating the feasibility of auditory fMRI in rats. This is the first fMRI study of the rodent ascending auditory pathway. © 2012 Elsevier Inc

    In vivo MRI study of the visual system in normal, developing and injured rodent brains

    Get PDF
    This paper demonstrated our recent use of contrast-enhanced MRI, diffusion tensor/kurtosis imaging, proton magnetic resonance spectroscopy, and functional MRI techniques, for in vivo and global assessments of the structure, metabolism and function of the visual system in rodent studies of ocular diseases, optic neuropathies, developmental plasticity and neonatal hypoxic-ischemic brain injury at 7T. Results suggested the significant values of high-field multiparametric MRI for uncovering the processes and mechanisms of developmental and pathophysiological changes systematically along both anterior and posterior visual pathways, and may provide early diagnoses and therapeutic strategies for promoting functional recovery upon partial vision loss. © 2010 IEEE

    In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging

    No full text
    The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn 2+ injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn 2+ ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting. © 2010 Elsevier Inc
    corecore