107 research outputs found
Negative index metamaterial combining magnetic resonators with metal films
We present simulation results of a design for negative index materials that
uses magnetic resonators to provide negative permeability and metal film for
negative permittivity. We also discuss the possibility of using semicontinuous
metal films to achieve better manufacturability and enhanced impedance
matching.Comment: 6 pages, 3 figure
Retroperitoneal myolipoma
BACKGROUND: Myolipoma is a benign tumour in which smooth muscle cells are mixed with adipocytes. CASE PRESENTATION: A 34-year old lady presented with a mass in the right iliac fossa detected on computerised tomographic (CT) scan. Wide excision of the retroperitoneal mass was done. Histopathology showed features of myolipoma. There was no recurrence or metastasis at three years. CONCLUSION: Myolipoma is a rare benign entity; hence a benign course and good prognosis are expected
Radiative and non-radiative local density of states on disordered plasmonic films
We present numerical calculations of the Local Density of Optical States
(LDOS) in the near field of disordered plasmonic films. The calculations are
based on an integral volume method, that takes into account polarization and
retardation effects, and allows us to discriminate radiative and non-radiative
contributions to the LDOS. At short distance, the LDOS is dominated by
non-radiative channels, showing that changes in the spontaneous dynamics of
dipole emitters are driven by non-radiative coupling to plasmon modes. Maps of
radiative and non-radiative LDOS exhibit strong fluctuations, but with
substantially different spatial distributions
A rigorous analysis of high order electromagnetic invisibility cloaks
There is currently a great deal of interest in the invisibility cloaks
recently proposed by Pendry et al. that are based in the transformation
approach. They obtained their results using first order transformations. In
recent papers Hendi et al. and Cai et al. considered invisibility cloaks with
high order transformations. In this paper we study high order electromagnetic
invisibility cloaks in transformation media obtained by high order
transformations from general anisotropic media. We consider the case where
there is a finite number of spherical cloaks located in different points in
space. We prove that for any incident plane wave, at any frequency, the
scattered wave is identically zero. We also consider the scattering of finite
energy wave packets. We prove that the scattering matrix is the identity, i.e.,
that for any incoming wave packet the outgoing wave packet is the same as the
incoming one. This proves that the invisibility cloaks can not be detected in
any scattering experiment with electromagnetic waves in high order
transformation media, and in particular in the first order transformation media
of Pendry et al. We also prove that the high order invisibility cloaks, as well
as the first order ones, cloak passive and active devices. The cloaked objects
completely decouple from the exterior. Actually, the cloaking outside is
independent of what is inside the cloaked objects. The electromagnetic waves
inside the cloaked objects can not leave the concealed regions and viceversa,
the electromagnetic waves outside the cloaked objects can not go inside the
concealed regions. As we prove our results for media that are obtained by
transformation from general anisotropic materials, we prove that it is possible
to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A:
Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in
IOP-Selec
Optical Cloaking with Non-Magnetic Metamaterials
Artificially structured metamaterials have enabled unprecedented flexibility
in manipulating electromagnetic waves and producing new functionalities,
including the cloak of invisibility based on coordinate transformation. Here we
present the design of a non-magnetic cloak operating at optical frequencies.
The principle and structure of the proposed cylindrical cloak are analyzed, and
the general recipe for the implementation of such a device is provided. The
cloaking performance is verified using full-wave finite-element simulations.Comment: 10 pages, 4 figure
Structure-function studies of the bHLH phosphorylation domain of TWIST1 in prostate cancer cells
The TWIST1 gene has diverse roles in development and pathologic diseases such as cancer. TWIST1 is a dimeric basic helix-loop-helix (bHLH) transcription factor existing as TWIST1-TWIST1 or TWIST1-E12/47. TWIST1 partner choice and DNA binding can be influenced during development by phosphorylation of Thr125 and Ser127 of the Thr-Gln-Ser (TQS) motif within the bHLH of TWIST1. The significance of these TWIST1 phosphorylation sites for metastasis is unknown. We created stable isogenic prostate cancer cell lines overexpressing TWIST1 wild-type, phospho-mutants, and tethered versions. We assessed these isogenic lines using assays that mimic stages of cancer metastasis. In vitro assays suggested the phospho-mimetic Twist1-DQD mutation could confer cellular properties associated with pro-metastatic behavior. The hypo-phosphorylation mimic Twist1-AQA mutation displayed reduced pro-metastatic activity compared to wild-type TWIST1 in vitro, suggesting that phosphorylation of the TWIST1 TQS motif was necessary for pro-metastatic functions. In vivo analysis demonstrates that the Twist1-AQA mutation exhibits reduced capacity to contribute to metastasis, whereas the expression of the Twist1-DQD mutation exhibits proficient metastatic potential. Tethered TWIST1-E12 heterodimers phenocopied the Twist1-DQD mutation for many in vitro assays, suggesting that TWIST1 phosphorylation may result in heterodimerization in prostate cancer cells. Lastly, the dual phosphatidylinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibitor BEZ235 strongly attenuated TWIST1-induced migration that was dependent on the TQS motif. TWIST1 TQS phosphorylation state determines the intensity of TWIST1-induced pro-metastatic ability in prostate cancer cells, which may be partly explained mechanistically by TWIST1 dimeric partner choice
The Boundary Conditions for Point Transformed Electromagnetic Invisibility Cloaks
In this paper we study point transformed electromagnetic invisibility cloaks
in transformation media that are obtained by transformation from general
anisotropic media. We assume that there are several cloaks located in different
points in space. Our results apply in particular to the first order
invisibility cloaks introduced by Pendry et al. and to the high order
invisibility cloaks introduced by Hendi et al. and by Cai et al.. We identify
the appropriate {\it cloaking boundary conditions} that the solutions of
Maxwell equations have to satisfy at the outside, , and at the
inside, , of the boundary of the cloaked object . Namely, that
the tangential components of the electric and the magnetic fields have to
vanish at -what is always true- and that the normal components
of the curl of the electric and the magnetic fields have to vanish at . These results are proven requiring that energy be conserved. In the case
of one spherical cloak with a spherically stratified and a radial current
at we verify by an explicit calculation that our {\it cloaking
boundary conditions} are satisfied and that cloaking of active devices holds
even if the current is at the boundary of the cloaked object. As we prove our
results for media that are obtained by transformation from general anisotropic
media, our results apply to the cloaking of objects with active and passive
devices contained in general anisotropic media, in particular to objects with
active and passive devices contained inside general crystals.Comment: This final, published, version has been edited, comments have been
adde
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
- …