174 research outputs found

    Early versus Later Rhythm Analysis in Patients with Out-of-Hospital Cardiac Arrest

    Get PDF
    Background In a departure from the previous strategy of immediate defibrillation, the 2005 resuscitation guidelines from the American Heart Association–International Liaison Committee on Resuscitation suggested that emergency medical service (EMS) personnel could provide 2 minutes of cardiopulmonary resuscitation (CPR) before the first analysis of cardiac rhythm. We compared the strategy of a brief period of CPR with early analysis of rhythm with the strategy of a longer period of CPR with delayed analysis of rhythm. Methods We conducted a cluster-randomized trial involving adults with out-of-hospital cardiac arrest at 10 Resuscitation Outcomes Consortium sites in the United States and Canada. Patients in the early-analysis group were assigned to receive 30 to 60 seconds of EMS-administered CPR and those in the later-analysis group were assigned to receive 180 seconds of CPR, before the initial electrocardiographic analysis. The primary outcome was survival to hospital discharge with satisfactory functional status (a modified Rankin scale score of ≤3, on a scale of 0 to 6, with higher scores indicating greater disability). Results We included 9933 patients, of whom 5290 were assigned to early analysis of cardiac rhythm and 4643 to later analysis. A total of 273 patients (5.9%) in the later-analysis group and 310 patients (5.9%) in the early-analysis group met the criteria for the primary outcome, with a cluster-adjusted difference of −0.2 percentage points (95% confidence interval, −1.1 to 0.7; P=0.59). Analyses of the data with adjustment for confounding factors, as well as subgroup analyses, also showed no survival benefit for either study group. Conclusions Among patients who had an out-of-hospital cardiac arrest, we found no difference in the outcomes with a brief period, as compared with a longer period, of EMS-administered CPR before the first analysis of cardiac rhythm. (Funded by the National Heart, Lung, and Blood Institute and others; ROC PRIMED ClinicalTrials.gov number, NCT00394706.

    Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators

    Get PDF
    Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survivalof out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrilla-tors (AED). AED algorithms for VF-detection are customarily assessed using Holter record-ings from public electrocardiogram (ECG) databases, which may be different from the ECGseen during OHCA events. This study evaluates VF-detection using data from both OHCApatients and public Holter recordings. ECG-segments of 4-s and 8-s duration were ana-lyzed. For each segment 30 features were computed and fed to state of the art machinelearning (ML) algorithms. ML-algorithms with built-in feature selection capabilities wereused to determine the optimal feature subsets for both databases. Patient-wise bootstraptechniques were used to evaluate algorithm performance in terms of sensitivity (Se), speci-ficity (Sp) and balanced error rate (BER). Performance was significantly better for publicdata with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times morefeatures than the data from public databases for an accurate detection (6 vs 3). No signifi-cant differences in performance were found for different segment lengths, the BER differ-ences were below 0.5-points in all cases. Our results show that VF-detection is morechallenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s

    Prehospital randomised assessment of a mechanical compression device in out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised trial and economic evaluation

    Get PDF
    Background: Mechanical chest compression devices may help to maintain high-quality cardiopulmonary resuscitation (CPR), but little evidence exists for their effectiveness. We evaluated whether or not the introduction of Lund University Cardiopulmonary Assistance System-2 (LUCAS-2; Jolife AB, Lund, Sweden) mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest (OHCA). Objective: Evaluation of the LUCAS-2 device as a routine ambulance service treatment for OHCA. Design: Pragmatic, cluster randomised trial including adults with non-traumatic OHCA. Ambulance dispatch staff and those collecting the primary outcome were blind to treatment allocation. Blinding of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. We also conducted a health economic evaluation and a systematic review of all trials of out-of-hospital mechanical chest compression. Setting: Four UK ambulance services (West Midlands, North East England, Wales and South Central), comprising 91 urban and semiurban ambulance stations. Clusters were ambulance service vehicles, which were randomly assigned (approximately 1 : 2) to the LUCAS-2 device or manual CPR. Participants: Patients were included if they were in cardiac arrest in the out-of-hospital environment. Exclusions were patients with cardiac arrest as a result of trauma, with known or clinically apparent pregnancy, or aged < 18 years. Interventions: Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene. Main outcome measures: Survival at 30 days following cardiac arrest; survival without significant neurological impairment [Cerebral Performance Category (CPC) score of 1 or 2]. Results: We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 device and 2819 assigned to control) between 15 April 2010 and 10 June 2013. A total of 985 (60%) patients in the LUCAS-2 group received mechanical chest compression and 11 (< 1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30-day survival was similar in the LUCAS-2 (104/1652, 6.3%) and manual CPR groups [193/2819, 6.8%; adjusted odds ratio (OR) 0.86, 95% confidence interval (CI) 0.64 to 1.15]. Survival with a CPC score of 1 or 2 may have been worse in the LUCAS-2 group (adjusted OR 0.72, 95% CI 0.52 to 0.99). No serious adverse events were noted. The systematic review found no evidence of a survival advantage if mechanical chest compression was used. The health economic analysis showed that LUCAS-2 was dominated by manual chest compression. Limitations: There was substantial non-compliance in the LUCAS-2 arm. For 272 out of 1652 patients (16.5%), mechanical chest compression was not used for reasons that would not occur in clinical practice. We addressed this issue by using complier average causal effect analyses. We attempted to measure CPR quality during the resuscitation attempts of trial participants, but were unable to do so. Conclusions: There was no evidence of improvement in 30-day survival with LUCAS-2 compared with manual compressions. Our systematic review of recent randomised trials did not suggest that survival or survival without significant disability may be improved by the use of mechanical chest compression. Future work: The use of mechanical chest compression for in-hospital cardiac arrest, and in specific circumstances (e.g. transport), has not yet been evaluated
    • …
    corecore