104 research outputs found

    Signatures of Selection in Admixed Dairy Cattle in Tanzania

    Get PDF
    Multiple studies have investigated selection signatures in domestic cattle and other species. However, there is a dearth of information about the response to selection in genomes of highly admixed crossbred cattle in relation to production and adaptation to tropical environments. In this study, we evaluated 839 admixed crossbred cows sampled from two major dairy regions in Tanzania namely Rungwe and Lushoto districts, in order to understand their genetic architecture and detect genomic regions showing preferential selection. Animals were genotyped at 150,000 SNP loci using the Geneseek Genomic Profiler (GGP) High Density (HD) SNP array. Population structure analysis showed a large within-population genetic diversity in the study animals with a high degree of variation in admixture ranging between 7 and 100% taurine genes (dairyness) of mostly Holstein and Friesian ancestry. We explored evidence of selection signatures using three statistical methods (iHS, XP-EHH, and pcadapt). Selection signature analysis identified 108 candidate selection regions in the study population. Annotation of these regions yielded interesting genes potentially under strong positive selection including ABCG2, ABCC2, XKR4, LYN, TGS1, TOX, HERC6, KIT, PLAG1, CHCHD7, NCAPG, and LCORL that are involved in multiple biological pathways underlying production and adaptation processes. Several candidate selection regions showed an excess of African taurine ancestral allele dosage. Our results provide further useful insight into potential selective sweeps in the genome of admixed cattle with possible adaptive and productive importance. Further investigations will be necessary to better characterize these candidate regions with respect to their functional significance to tropical adaptations for dairy cattle

    Potential roles of selected forage grasses in management of fall armyworm (Spodoptera frugiperda) through companion cropping

    Get PDF
    Production of maize, Zea mays L. (Poaceae), in sub-Saharan Africa is threatened by a new invasive pest, fall armyworm (FAW), Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). To mitigate this threat, push-pull companion cropping, a system originally developed for management of lepidopteran stemborers, may be used to control FAW. The original system involved trap crops that functioned as a 'pull' component to attract moths away from the main crop. How grass species can be used as trap crops in a push-pull system to control FAW is a question that remains to be answered, because maize is already a highly preferred host plant. Therefore, we tested oviposition preference of FAW female moths in no-choice and two-choice experiments and larval performance on six selected grasses (Poaceae) to assess their roles as trap crop 'pull' plants in the system. In no-choice tests, numbers of eggs deposited on Brachiaria brizantha (Hochst. ex A. Rich.) R. Webster cv. 'Piata', cv. 'Mulato II', and cv. 'Xaraes', and Napier grass (Pennisetum purpureum K. Schumach) cv. 'South Africa' were not statistically different from those deposited on maize. In two-choice tests between grasses and maize, there were no significant differences in number of eggs laid when the plants were of the same size. However, in two-choice tests with maize plants half of the size of the grasses, significantly more eggs were laid on B. brizantha cv. Xaraes and P. purpureum cv. South Africa than on maize, suggesting that crop phenology could make a difference. Numbers of larvae arrested on grass leaf cuts were considerably lower than those on maize leaf cuts after 48 h. In two-choice tests with maize, molasses grass (Melinis minutiflora P. Beauv.) was the only grass that was significantly preferred to maize for larval settlement after 24 h. After 48 h in the two-choice test, it was the only grass that retained larvae, although the larval count was significantly lower than on maize. Our data show that none of the grasses tested were strongly preferred to maize, but the results indicate plants attractive to FAW adults and larvae that could be utilized in a multiple trap crop approach to target various stages of the pest. Furthermore, results indicate the importance of planting these companion plants earlier than maize

    Performance Evaluation of Highly Admixed Tanzanian Smallholder Dairy Cattle Using SNP Derived Kinship Matrix

    Get PDF
    The main purpose of this study was to understand the type of dairy cattle that can be optimally used by smallholder farmers in various production environments such that they will maximize their yields without increasing the level of inputs. Anecdotal evidence and previous research suggests that the optimal level of taurine inheritance in crossbred animals lies between 50 and 75% when considering total productivity in tropical management clusters. We set out to assess the relationship between breed composition and productivity for various smallholder production systems in Tanzania. We surveyed 654 smallholder dairy households over a 1-year period and grouped them into production clusters. Based on supplementary feeding, milk productivity and sale as well as household wealth status four clusters were described: low-feed–low-output subsistence, medium-feed–low-output subsistence, maize germ intensive semi-commercial and feed intensive commercial management clusters. About 839 crossbred cows were genotyped at approximately 150,000 single nucleotide polymorphism (SNP) loci and their breed composition determined. Percentage dairyness (proportion of genes from international dairy breeds) was estimated through admixture analysis with Holstein, Friesian, Norwegian Red, Jersey, Guernsey, N’Dama, Gir, and Zebu as references. Four breed types were defined as RED–GUE (Norwegian Red/Friesian–Guernsey; Norwegian Red/Friesian–Jersey), RED–HOL (Norwegian Red/Friesian–Holstein), RED–Zebu (Norwegian Red/Friesian–Zebu), Zebu–RED (Zebu–Norwegian Red/Friesian) based on the combination of breeds that make up the top 76% breed composition. A fixed regression model using a genomic kinship matrix was used to analyze milk yield records. The fitted model accounted for year-month-test-date, parity, age, breed type and the production clusters as fixed effects in the model in addition to random effects of animal and permanent environment effect. Results suggested that RED–Zebu breed type with dairyness between 75 and 85% is the most appropriate for a majority of smallholder management clusters. Additionally, for farmers in the feed intensive management group, animals with a Holstein genetic background with at least 75% dairy composition were the best performing. These results indicate that matching breed type to production management group is central to maximizing productivity in smallholder systems. The findings from this study can serve as a basis to inform the development of the dairy sector in Tanzania and beyond

    Bioactive Volatiles From Push-Pull Companion Crops Repel Fall Armyworm and Attract Its Parasitoids

    Get PDF
    Fall armyworm, Spodoptera frugiperda, is a serious invasive pest in Africa but "Push-Pull" companion cropping can substantially reduce infestation. Here, we elucidate the underpinning chemical ecology mechanisms. We hypothesized that companion crop volatiles repel herbivores (push) while attracting natural enemies (pull). Headspace volatiles collected from companion plants (Desmodium intortum, Desmodium uncinatum, Brachiaria Mulato II) were used in bioassays and electrophysiological recordings with S. frugiperda and parasitoid wasps. Insect populations, plant damage and herbivore parasitism were assessed in field plots. Coupled GC-electroantennogram (GC-EAG) recordings showed robust responses to certain aromatic and terpenoid volatile compounds. In wind tunnel bioassays, maize volatiles mixed with Desmodium volatiles were less attractive to moths than maize alone. In oviposition bioassays, S. frugiperda laid significantly fewer eggs on maize when Desmodium volatiles were present. Conversely, in an olfactometer bioassay, parasitoid wasps were attracted to the scent of both Desmodium spp. (intercrop) and the Brachiaria border crop. Our data provide evidence of the mechanisms underpinning reduced S. frugiperda infestation in the Push-Pull companion cropping system, i.e., volatiles from companion crops repel S. frugiperda while attracting its parasitoid natural enemies. These findings explain why Push-Pull field plots had fewer S. frugiperda larvae and lower crop damage than monocropped maize

    Use of High Density Single Nucleotide Polymorphism (SNP) Arrays to Assess Genetic Diversity and Population Structure of Dairy Cattle in Smallholder Dairy Systems: The Case of Girinka Programme in Rwanda

    Get PDF
    In most smallholder dairy programmes, farmers are not fully benefitting from the genetic potential of their dairy cows. This is in part due to the mismatch between the available genotypes and the environment, including management, in which the animals perform. With sparse performance and pedigree records in smallholder dairy farms, the true degree of baseline genetic variability and breed composition is not known and hence rendering any genetic improvement initiative difficult to implement. Using the Girinka programme of Rwanda as an exemplar, the current study was aimed at better understanding the genetic diversity and population structure of dairy cattle in the smallholder dairy farm set up. Further, the association between farmer self-reported cow genotypes and genetically determined genotypes was investigated. The average heterozygosity estimates were highest (0.38 ± 0.13) for Rwandan dairy cattle and lowest for Gir and N’Dama (0.18 ± 0.19 and 0.25 ± 0.20, respectively). Systematic characterization of the genetic variation and diversity available may inform the formulation of sustainable improvement strategies such as targeting and matching the genotype of cows to productivity goals and farmer profile and hence reducing the negative impact of genotype by environment interaction

    Screening for host plant resistance to Helicoverpa armigera in selected chickpea (Cicer arietinum L) genotypes in Kenya

    Get PDF
    Hellicoverpa armigera (poad borer) is a major pest of chickpea (Cicer aurientinum) in many areas of the world, In Kenya, it causes up to 80% yield losses of the crop

    Temporal changes in the positivity rate of common enteric viruses among paediatric admissions in coastal Kenya, during the COVID-19 pandemic, 2019–2022

    Get PDF
    Background: The non-pharmaceutical interventions (NPIs) implemented to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic, substantially disrupted the activity of other respiratory viruses. However, there is limited data from low-and-middle income countries (LMICs) to determine whether these NPIs also impacted the transmission of common enteric viruses. Here, we investigated the changes in the positivity rate of five enteric viruses among hospitalised children who presented with diarrhoea to a referral hospital in coastal Kenya, during COVID-19 pandemic period. Methods: A total of 870 stool samples from children under 13 years of age admitted to Kilifi County Hospital between January 2019, and December 2022 were screened for rotavirus group A (RVA), norovirus genogroup II (GII), astrovirus, sapovirus, and adenovirus type F40/41 using real-time reverse-transcription polymerase chain reaction. The proportions positive across the four years were compared using the chi-squared test statistic. Results: One or more of the five virus targets were detected in 282 (32.4%) cases. A reduction in the positivity rate of RVA cases was observed from 2019 (12.1%, 95% confidence interval (CI) 8.7–16.2%) to 2020 (1.7%, 95% CI 0.2–6.0%; p < 0.001). However, in the 2022, RVA positivity rate rebounded to 23.5% (95% CI 18.2%–29.4%). For norovirus GII, the positivity rate fluctuated over the four years with its highest positivity rate observed in 2020 (16.2%; 95% C.I, 10.0–24.1%). No astrovirus cases were detected in 2020 and 2021, but the positivity rate in 2022 was similar to that in 2019 (3.1% (95% CI 1.5%–5.7%) vs. 3.3% (95% CI 1.4–6.5%)). A higher case fatality rate was observed in 2021 (9.0%) compared to the 2019 (3.2%), 2020 (6.8%) and 2022 (2.1%) (p < 0.001). Conclusion: Our study finds that in 2020 the transmission of common enteric viruses, especially RVA and astrovirus, in Kilifi Kenya may have been disrupted due to the COVID-19 NPIs. After 2020, local enteric virus transmission patterns appeared to return to pre-pandemic levels coinciding with the removal of most of the government COVID-19 NPIs

    Genomic epidemiology of Human Adenovirus F40 and F41 in Coastal Kenya : a retrospective hospital-based surveillance study (2013-2022)

    Get PDF
    Human adenovirus species F (HAdV-F) is a leading cause of childhood diarrhoeal deaths. Genomic analysis would be key for understanding transmission dynamics, potential drivers of disease severity, transmission dynamics, and for vaccine development. However, currently there are limited HAdV-F genomic data globally. Here, we sequenced and analysed HAdV-F from stool samples collected in coastal Kenya between 2013 and 2022. The samples were collected at Kilifi County Hospital in coastal, Kenya, from children &amp;lt; 13 years of age who reported a history of ≥ 3 loose stools in the previous 24hrs. The genomes were analyzed together with data from the rest of the world by phylogenetic analysis and mutational profiling. Types and lineages were assigned based on phylogenetic clustering consistent with previously described criteria and nomenclature. Participant clinical and demographic data were linked to genotypic data. Of 91 cases identified using real-time PCR, 88 near-complete genomes were assembled, and these classified into HAdV-F40 (n=41) and F41 (n=47). These types cocirculated throughout the study period. Three and four distinct lineages were observed for HAdV-F40 (Lineage 1-3) and F41 (Lineage 1, 2A, 3A, 3C and 3D). Types F40 and F41 coinfections were observed in five samples, and F41 and B7 in one sample. Two children with F40 and 41 coinfections were also infected with rotavirus and had moderate and severe disease as defined using the Vesikari Scoring System, respectively. Intratypic recombination was found in 4 HAdV-F40 sequences occurring between lineages 1 and 3. None of the HAdV-F41 cases had jaundice. This study provides evidence of extensive genetic diversity, coinfections, and recombination within HAdV-F40 in a rural coastal Kenya that will inform public health policy, vaccine development that includes the locally circulating lineages, and molecular diagnostic assay development. We recommend future comprehensive studies elucidating on HAdV-F genetic diversity and immunity for rational vaccine development

    Trends and intensity of Rhinovirus invasions in Kilifi, coastal Kenya, over a 12-year period, 2007–2018

    Get PDF
    Background: Rhinoviruses (RVs) are ubiquitous pathogens and the principal etiological agents of common cold. Despite the high frequency of RV infections, data describing their long-term epidemiological patterns in a defined population remain limited. Methods: Here, we analysed 1,070 VP4/VP2 genomic region sequences sampled at Kilifi County Hospital on the Kenya Coast. The samples were collected between 2007 and 2018 from hospitalised paediatric patients (< 60 months) with acute respiratory illness. Results: Of 7,231 children enrolled, RV was detected in 1,497 (20.7%) and VP4/VP2 sequences were recovered from 1,070 samples (71.5%). A total of 144 different RV types were identified (67 Rhinovirus A, 18 Rhinovirus B and 59 Rhinovirus C) and at any month, several types co-circulated with alternating predominance. Within types multiple genetically divergent variants were observed. Ongoing RV infections through time appeared to be a combination of (i) persistent types (observed up to seven consecutive months), (ii) reintroduced genetically distinct variants and (iii) new invasions (average of eight new types, annually). Conclusion: Sustained RV presence in the Kilifi community is mainly due to frequent invasion by new types and variants rather than continuous transmission of locally established types/variants
    • …
    corecore