37 research outputs found

    GPR55 deficiency is associated with increased adiposity and impaired insulin signaling in peripheral metabolic tissues

    Get PDF
    This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and Diabetes UK. The authors declare no conflicts of interest. This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Peer reviewedPublisher PD

    l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway

    Get PDF
    The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury. While LPI activates multiple signaling pathways, little is known about which ones are important in cardiomyocytes. In this study we explored whether activation of the Rho kinase/ROCK/p38 MAPK pathway is responsible for LPI-induced extension of I/R injury. Using a high-throughput screening method (dynamic mass redistribution; DMR), mouse- and human-induced pluripotent stem cell (iPSC) cardiomyocytes exposed to LPI were shown to exhibit a rapid, sustained, and concentration‐dependent (1 nmol L−1‐30 μmol L−1) cellular response. Y‐27632 (ROCK inhibitor; 10 & 50 μmol L−1) and CBD (1 μmol L−1) both abolished the DMR response to LPI (10 μmol L−1). In murine iPSC cardiomyocytes, LPI-induced ROCK and p38 MAPK phosphorylation, both of which were prevented by Y-27632 and CBD, but did not induce JNK activation or cleavage of caspase-3. In hearts isolated from wild type (WT) mice subjected to 30 minutes global I/R, LPI (10 μmol L−1) administered via the coronary circulation increased infarct size when applied prior to ischemia onset, but not when given at the time of reperfusion. The exacerbation of tissue injury by LPI was not seen in hearts from GPR55−/− mice or in the presence of Y-27632, confirming that injury is mediated via the GPR55/ROCK/p38 MAPK pathway. These findings suggest that raised levels of LPI in the vicinity of a developing infarct may worsen the outcome of AMI

    Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia-reperfusion injury through depletion of glutathione.

    Get PDF
    Zinc (Zn) plays an important role in maintaining the anti-oxidant status within the heart, and helps to counter the acute redox stress that occurs during myocardial ischaemia and reperfusion. Individuals with low zinc (Zn) levels are at greater risk of developing an acute myocardial infarction; however, the impact of this on the extent of myocardial injury is unknown. The present study aimed to compare the effects of dietary zinc depletion with in vitro removal of Zn (TPEN) on the outcome of acute myocardial infarction and vascular function. Male Sprague-Dawley rats were fed either a zinc adequate (ZA; 35mg Zn/kg diet) or zinc deficient (ZD; < 1mg Zn/kg diet) diet for two weeks prior to heart isolation. Perfused hearts were subjected to a thirty-minute ischaemia/two-hour reperfusion (I/R) protocol, during which time ventricular arrhythmias were recorded and after which infarct size was measured, along with markers of anti-oxidant status. In separate experiments hearts were challenged with the Zn chelator TPEN (10μM) prior to ischaemia onset. Both dietary and TPEN-induced Zn depletion significantly extended infarct size; dietary Zn depletion was associated with reduced total cardiac glutathione (GSH) levels, while TPEN decreased cardiac SOD-1 levels. TPEN, but not dietary Zn depletion also suppressed ventricular arrhythmias and depressed vascular responses to nitric oxide (NO). These findings demonstrate that both modes of zinc depletion worsen the outcome from I/R but through different mechanisms. Dietary Zn deficiency, resulting in reduced cardiac GSH, is the most appropriate model for determining the role of endogenous Zn in I/R injury

    Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach.

    Get PDF
    The receptors mediating the hemodynamic responses to cannabinoids are not clearly defined due to the multifarious pharmacology of many commonly used cannabinoid ligands. While both CB1 and TRPV1 receptors are implicated, G protein-coupled receptor 55 (GPR55) may also mediate some of the hemodynamic effects of several atypical cannabinoid ligands. The present studies attempted to unravel the pharmacology underlying the in vivo hemodynamic responses to ACEA (CB1 agonist), O-1602 (GPR55 agonist), AM251 (CB1 antagonist), and cannabidiol (CBD; GPR55 antagonist). Agonist and antagonist profiles of each ligand were determined by ligand-induced GTPcS binding in membrane preparations expressing rat and mouse CB1 and GPR55 receptors. Blood pressure responses to ACEA and O-1602 were recorded in anesthetized and conscious mice (wild type, CB1 / and GPR55 / ) and rats in the absence and presence of AM251 and CBD. ACEA demonstrated GTPcS activation at both receptors, while O-1602 only activated GPR55. AM251 exhibited antagonist activity at CB1 and agonist activity at GPR55, while CBD demonstrated selective antagonist activity at GPR55. The depressor response to ACEA was blocked by AM251 and attenuated by CBD, while O-1602 did not induce a depressor response. AM251 caused a depressor response that was absent in GPR55 / mice but enhanced by CBD, while CBD caused a small vasodepressor response that persisted in GPR55 / mice. Our findings show that assessment of the pharmacological profile of receptor activation by cannabinoid ligands in in vitro studies alongside in vivo functional studies is essential to understand the role of cannabinoids in hemodynamic control

    GPR55 deletion in mice leads to age-related ventricular dysfunction and impaired adrenoceptor-mediated inotropic responses.

    Get PDF
    G protein coupled receptor 55 (GPR55) is expressed throughout the body and, although its exact physiological function is unknown, studies have suggested that it has a role in the cardiovascular system. In particular, GPR55 has been proposed as mediating the haemodynamic effects of a number of atypical cannabinoid ligands; however this data is conflicting. Thus, given the incongruous nature of our understanding of the GPR55 receptor and the relative paucity of literature regarding its role in cardiovascular physiology, this study was carried out to examine the influence of GPR55 on cardiac function. Cardiac function was assessed via pressure volume loop analysis, and cardiac morphology/composition assessed via histological staining, in both wild-type (WT) and GPR55 knockout (GPR55−/−) mice. Pressure volume loop analysis revealed that basal cardiac function was similar in young WT and GPR55−/− mice. In contrast, mature GPR55−/− mice were characterised by both significant ventricular remodelling (reduced left ventricular wall thickness and increased collagen deposition) and systolic dysfunction when compared to age-matched WT mice. In particular, the load-dependent parameter, ejection fraction, and the load-independent indices, end-systolic pressure-volume relationship (ESPVR) and Emax, were all significantly (P < 0.05) attenuated in mature GPR55−/− mice. Furthermore, GPR55−/− mice at all ages were characterised by a reduced contractile reserve. Our findings demonstrate that mice deficient in GPR55 exhibit maladaptive adrenergic signalling, as evidenced by the reduced contractile reserve. Furthermore, with age these mice are characterised by both significant adverse ventricular remodelling and systolic dysfunction. Taken together, this may suggest a role for GPR55 in the control of adrenergic signalling in the heart and potentially a role for this receptor in the pathogenesis of heart failure

    Corrigendum to: Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review

    Get PDF
    During the manuscript editing three authors were omitted and the chemical structure was missing from Figure 9. This output contains the missing authors and a corrected Figure 9

    Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review.

    No full text
    Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology Sections, with contributions from a number of world-leading researchers in the field of natural product drug discovery, to provide a “position statement” on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases

    Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats

    No full text
    1. The overall aim of this study was to determine if adrenomedullin (AM) protects against myocardial ischaemia (MI)-induced arrhythmias via nitric oxide (NO) and peroxynitrite. 2. In sham-operated rats, the effects of in vivo administration of a bolus dose of AM (1 nmol kg(−1)) was assessed on arterial blood pressure (BP), ex vivo leukocyte reactive oxygen species generation and nitrotyrosine deposition (a marker for peroxynitrite formation) in the coronary endothelium. 3. In pentobarbitone-anaesthetized rats subjected to ligation of the left main coronary artery for 30 min, the effects of a bolus dose of AM (1 nmol kg(−1), i.v.; n=19) or saline (n=18) given 5 min pre-occlusion were assessed on the number and incidence of cardiac arrhythmias. In a further series of experiments, some animals received infusions of the NO synthase inhibitor N(G)-nitro-L-arginine (LNNA) (0.5 mg kg(−1) min(−1)) or the peroxynitrite scavenger N-mercaptopropionyl-glycine (MPG) (20 mg kg(−1) h(−1)) before AM. 4. AM treatment significantly reduced mean arterial blood pressure (MABP) and increased ex vivo chemiluminescence (CL) generation from leukocytes in sham-operated animals. AM also enhanced the staining for nitrotyrosine in the endothelium of coronary arteries. 5. AM significantly reduced the number of total ventricular ectopic beats that occurred during ischaemia (from 1185±101 to 520±74; P<0.05) and the incidences of ventricular fibrillation (from 61 to 26%; P<0.05). AM also induced a significant fall in MABP prior to occlusion. AM-induced cardioprotection was abrogated in animals treated with the NO synthase inhibitor LNNA and the peroxynitrite scavenger MPG. 6. This study has shown that AM exhibits an antiarrhythmic effect through a mechanism that may involve generation of NO and peroxynitrite
    corecore