1,039 research outputs found

    Polarized Scattering in the Vicinty of Galaxies

    Full text link
    Some bright cD galaxies in cluster cooling flows have Thomson optical depths exceeding 0.01. A few percent of their luminosity is scattered and appears as diffuse polarized emission. We calculate the scattering process for different geometric combinations of luminosity sources and scattering media. We apply our results to galaxies, with and without active nuclei, immersed in cooling flows. We model observations of NGC 1275 and M87 (without active nuclei) in the presence of sky and galactic background fluxes which hinder the measurement of the scattered light at optical wavelengths. Current instruments are unable to detect the scattered light from such objects. However, when a galaxy has an active nucleus of roughly the same luminosity as the remainder of the galaxy in V, both the total and polarized scattered intensity should observable on large scales (5--30kpc), meaning intensity levels greater than 1% of the background level. For typical AGN and galaxy spectral distributions, the scattering is most easily detected at short (U) wavelengths. We point out that a number of such cases will occur. We show that the radiation pattern from the central nuclear region can be mapped using the scattering. We also show that the scattered light can be used to measure inhomogeneities in the cooling flow.Comment: 29 pages of TEX, 14 figs, CRSR-1046, in ApJ Nov 20, 199

    Cosmic String Loop Microlensing

    Get PDF
    Cosmic superstring loops within the galaxy microlens background point sources lying close to the observer-string line of sight. For suitable alignments, multiple paths coexist and the (achromatic) flux enhancement is a factor of two. We explore this unique type of lensing by numerically solving for geodesics that extend from source to observer as they pass near an oscillating string. We characterize the duration of the flux doubling and the scale of the image splitting. We probe and confirm the existence of a variety of fundamental effects predicted from previous analyses of the static infinite straight string: the deficit angle, the Kaiser-Stebbins effect, and the scale of the impact parameter required to produce microlensing. Our quantitative results for dynamical loops vary by O(1) factors with respect to estimates based on infinite straight strings for a given impact parameter. A number of new features are identified in the computed microlensing solutions. Our results suggest that optical microlensing can offer a new and potentially powerful methodology for searches for superstring loop relics of the inflationary era.Comment: 20 pages, 19 figure

    Black Hole-Neutron Star Mergers in Globular Clusters

    Full text link
    We model the formation of black hole-neutron star (BH-NS) binaries via dynamical interactions in globular clusters. We find that in dense, massive clusters, 16-61% of the BH-NS binaries formed by interactions with existing BH binaries will undergo mergers driven by the emission of gravitational radiation. If the BHs are retained by the cluster after merging with a NS, the BHs acquire subsequent NS companions and undergo several mergers. Thus, the merger rate depends critically upon whether or not the BH is retained by the cluster after the merger. Results from numerical relativity suggest that kick imparted to a ~7 M_sun BH after it merges with a NS will greatly exceed the cluster's escape velocity. In this case, the models suggest that the majority of BH-NS mergers in globular clusters occur within 4 Gyrs of the cluster's formation and would be unobservable by Advanced LIGO. For more massive BHs, on the other hand, the post merger kick is suppressed and the BH is retained. Models with 35 M_sun BHs predict Advanced LIGO detection rates in the range 0.04 - 0.7 per year. On the pessimistic end of this range, BH-NS mergers resulting from binary-single star interactions in globular clusters could account for an interesting fraction of all BH-NS mergers. On the optimistic end, this channel may dominate the rate of detectable BH-NS mergers.Comment: 13 pages, 7 figures, 3 tabels, accepted for publication in MNRA

    Dynamically formed black hole+millisecond pulsar binaries in globular clusters

    Get PDF
    The discovery of a binary comprising a black hole (BH) and a millisecond pulsar (MSP) would yield insights into stellar evolution and facilitate exquisitely sensitive tests of general relativity. Globular clusters (GCs) are known to harbor large MSP populations and recent studies suggest that GCs may also retain a substantial population of stellar mass BHs. We modeled the formation of BH+MSP binaries in GCs through exchange interactions between binary and single stars. We found that in dense, massive clusters most of the dynamically formed BH+MSP binaries will have orbital periods of 2 to 10 days, regardless of the mass of the BH, the number of BHs retained by the cluster, and the nature of the GC's binary population. The size of the BH+MSP population is sensitive to several uncertain parameters, including the BH mass function, the BH retention fraction, and the binary fraction in GCs. Based on our models, we estimate that there are 0.6±0.20.6\pm0.2 dynamically formed BH+MSP binaries in the Milky Way GC system, and place an upper limit on the size of this population of ∼10\sim 10. Interestingly, we find that BH+MSP binaries will be rare even if GCs retain large BH populations.Comment: 15 pages, 5 figures, 2 tables, accepted for publication in MNRAS, updated to match published versio
    • …
    corecore