35 research outputs found

    A non-genetic engineering platform for rapidly generating and expanding cancer-specific armed T cells

    No full text
    Abstract Background Cancer-specific adoptive T cell therapy has achieved successful milestones in multiple clinical treatments. However, the commercial production of cancer-specific T cells is often hampered by laborious cell culture procedures, the concern of retrovirus-based gene transfection, or insufficient T cell purity. Methods In this study, we developed a non-genetic engineering technology for rapidly manufacturing a large amount of cancer-specific T cells by utilizing a unique anti-cancer/anti-CD3 bispecific antibody (BsAb) to directly culture human peripheral blood mononuclear cells (PBMCs). The anti-CD3 moiety of the BsAb bound to the T cell surface and stimulated the differentiation and proliferation of T cells in PBMCs. The anti-cancer moiety of the BsAb provided these BsAb-armed T cells with the cancer-targeting ability, which transformed the naïve T cells into cancer-specific BsAb-armed T cells. Results With this technology, a large amount of cancer-specific BsAb-armed T cells can be rapidly generated with a purity of over 90% in 7 days. These BsAb-armed T cells efficiently accumulated at the tumor site both in vitro and in vivo. Cytotoxins (perforin and granzyme) and cytokines (TNF-α and IFN-γ) were dramatically released from the BsAb-armed T cells after engaging cancer cells, resulting in a remarkable anti-cancer efficacy. Notably, the BsAb-armed T cells did not cause obvious cytokine release syndrome or tissue toxicity in SCID mice bearing human tumors. Conclusions Collectively, the BsAb-armed T cell technology represents a simple, time-saving, and highly safe method to generate highly pure cancer-specific effector T cells, thereby providing an affordable T cell immunotherapy to patients

    Serum-free transfection of CHO cells with chemically defined transfection systems and investigation of their potential for transient and stable transfection

    No full text
    The generation of transgenic cell lines is acquired by facilitating the uptake and integration of DNA. Unfortunately, most of the systems generating stable expression systems are cost and time-consuming and transient expression is optimized to generate milligram amounts of the recombinant protein. Therefore we improved and compared two transfection systems, one based on cationic liposomes consisting of DOTAP/DOPE and the second one on polyethylenimine (PEI). Both systems have been used as chemically defined transfection systems in combination with serum-free cultivated host cell line. At first we had determined the toxicity and ideal ratio of DNA to PEI followed by determination of the optimal transfection conditions in order to achieve maximum transfection efficiency. We then directly compared DOTAP/DOPE and PEI in transient transfection experiments using enhanced green fluorescence protein (EGFP) and a human monoclonal antibody, mAb 2F5, as a model protein. The results which were achieved in case of EGFP were more than 15% transfectants at a viability of 85%. Despite the fact that expression of the mAb was found negligible we used both techniques to generate stable mAb 2F5 expressing cell lines that underwent several cycles of screening and amplification with methotrexate, and resulted in cell lines with similar volumetric production titers. These experiments serve to demonstrate the potential of stable cell lines even in case where the transient systems did not show satisfying results
    corecore