177 research outputs found

    Spatiotemporal expression of the serine protease inhibitor, SERPINE2, in the mouse placenta and uterus during the estrous cycle, pregnancy, and lactation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SERPINE2, also known as glia-derived nexin or protease nexin-1, belongs to the serine protease inhibitor (SERPIN) superfamily. It is one of the potent serpins that modulates the activity of the plasminogen activator (PA) and was implicated in tissue remodeling. In this study, we investigated the expression patterns of SERPINE2 in the mouse placenta and uterus during the estrous cycle, pregnancy, and lactation.</p> <p>Methods</p> <p>SERPINE2 was purified from mouse seminal vesicle secretion using liquid chromatography (LC) and identified by LC/tandem mass spectrometry. The antiserum against the SERPINE2 protein was raised in rabbits. To reveal the uterine and placental expression of SERPINE2, tissues at various stages were collected for real-time PCR quantification, Western blotting, and immunohistochemical staining.</p> <p>Results</p> <p>Serpine2 mRNA was the major PA inhibitor in the placenta and uterus during the estrous cycle, pregnancy, and lactation, although Serpine1 mRNA had higher expression levels than Serpine2 mRNA in the placenta. Plat seemed to be the major PA in the mouse uterus and placenta. Antiserum against the SERPINE2 protein specifically recognized two forms of SERPINE2 and an extra 75-kDa protein, which was probably a complex of SERPINE2 with a certain protease, from among thousands of protein components in the tissue extract as demonstrated by Western blotting. In the uterus, SERPINE2 was primarily localized in luminal and glandular epithelial cells but it also was detected in circular and longitudinal smooth muscle cells during the estrous cycle and lactation. It was prominently expressed in decidual stroma cells, the metrial gland, and endometrial epithelium of the pregnant uterus. In the placenta, SERPINE2 was expressed in trophoblasts of the labyrinth and spongiotrophoblasts. However, its expression was remarkably reduced in giant cells which existed in the giant cell-decidual junction zone. In contrast, prominent expression of SERPINE2 seemed to be detected on clusters of glycogen cells near the junction zone. In addition, yolk sac membranes also showed high expression of SERPINE2.</p> <p>Conclusions</p> <p>These findings indicate that SERPINE2 is a major PA inhibitor in the placenta and uterus during the estrous cycle, pregnancy, and lactation. It may participate in the PA-modulated tissue remodeling process in the mouse placenta and uterus.</p

    Rapid detection of K650E mutation in FGFR3 using uncultured amniocytes in a pregnancy affected with fetal cloverleaf skull, occipital pseudoencephalocele, ventriculomegaly, straight short femurs, and thanatophoric dysplasia type II

    Get PDF
    AbstractObjectiveTo present the ultrasound and molecular genetic diagnosis of thanatophoric dysplasia type II (TD2).Case ReportA 35-year-old, primigravid woman was referred to our institution for genetic counseling and amniocentesis at 19 weeks of gestation because of advanced maternal age and sonographic abnormalities in the fetus. The prenatal ultrasound showed short straight femurs, prominent forehead, narrow chest, skin edema, short limbs, and cloverleaf skull consistent with the diagnosis of TD2. Amniocentesis revealed a karyotype of 46,XX. DNA testing for the FGFR3 gene using uncultured amniocytes revealed a heterozygous c.1948A>G, AAG>GAG transversion leading to a p.Lys650Glu(K650E) mutation in the FGFR3 gene. A prenatal ultrasound at 21 weeks of gestation showed ventriculomegaly, cloverleaf skull, straight femurs, micromelia, narrow chest, and pseudoencephalocele with a bulging occipital bone mimicking encephalocele. The pregnancy was subsequently terminated, and a 480-g malformed fetus was delivered with macrocephaly, depressed nasal bridge, short upturned nasal tip, hypoplastic midface, frontal bossing, short digits, trident-shaped hands, short limbs, cloverleaf skull, narrow chest, brachydactyly, nuchal edema, and bulging occipital bone.ConclusionA prenatal diagnosis of cloverleaf skull, short limbs, straight femurs, and occipital pseudoencephalocele should include a differential diagnosis of TD2. A molecular analysis of FGFR3 using uncultured amniocytes is useful for the rapid confirmation of TD2 at prenatal diagnosis

    Prenatal diagnosis and molecular cytogenetic characterization of de novo partial monosomy 3p (3p26.3→pter) and partial trisomy 16q (16q23.1→qter)

    Get PDF
    AbstractObjectiveTo present the prenatal diagnosis and molecular cytogenetic characterization of a de novo unbalanced reciprocal translocation.Case ReportA 37-year-old woman, G3P1, underwent amniocentesis at 17 weeks of gestation because of her advanced maternal age. Her husband was 38 years old. Amniocentesis revealed a derivative chromosome 3 with the deletion of terminal 3p and the addendum of an unknown extra chromosomal segment on the distal 3p. The parental karyotypes were normal. Prenatal ultrasound findings were unremarkable. Array comparative genomic hybridization (aCGH) analysis using cultured amniocytes revealed a 2.38-Mb deletion in 3p26.3 [arr 3p26.3 (1-2,380,760)×1] encompassing 15 genes, which included 3 OMIM genes CHL1, CNTN6, and CNTN4, and a 13.17-Mb duplication in 16q23.1-q24.3 [arr 16q23.1q24.3 (76,999,082-90,170,596)×3] encompassing 207 genes, which included 81 OMIM genes. The pregnancy was subsequently terminated, and a malformed fetus was delivered with facial dysmorphism. Postnatal cord blood analysis revealed a karyotype of 46,XY,der(3)t(3;16)(p26.3;q23.1)dn. Polymorphic DNA marker analysis by quantitative fluorescent polymerase chain reaction (QF-PCR) on the DNAs extracted from the placenta and parental blood showed a paternal origin of the aberrant chromosome.ConclusionThe aCGH and QF-PCR analyses helped in delineating the genomic imbalance and parental origin of prenatally detected de novo unbalanced reciprocal translocation

    De novo duplication of Xq22.1→q24 with a disruption of the NXF gene cluster in a mentally retarded woman with short stature and premature ovarian failure

    Get PDF
    AbstractObjectiveTo present molecular cytogenetic characterization of a de novo duplication of Xq22.1→q24 in a mentally retarded woman with short stature and premature ovarian failure.Materials and MethodsA 19-year-old woman presented with psychomotor retardation, developmental delay, mental retardation, short stature, low body weight, general muscle hypotonia, distal muscle hypotrophy of the lower extremities, elongated digits, scanty pubic and axillary hair, hypoplastic external female genitalia, and secondary amenorrhea but no clinical features of Pelizaeus-Merzbacher disease. Conventional cytogenetic analysis revealed a karyotype of 46,X,dup(X)(q22.1q24). Fluorescence in situ hybridization determined a direct duplication with a linear tandem orientation. Array comparative genomic hybridization demonstrated partial trisomy Xq [arr cgh Xq22.1q24 (101,490,234–119,070,188 bp)×3] with a 17.6-Mb duplication.ResultsThe duplicated region contained NXF2B, NXF4, NXF3, PLP1, and PGRMC1 genes. There was a disruption of the NXF gene cluster of Xcen-NXF5-NXF2-NXF2B-NXF4-NXF3-Xqter.ConclusionA duplication of Xq22.1→q24 with a disruption of the NXF gene cluster in female patients can be associated with clinical manifestations of mental retardation in addition to short stature and premature ovarian failure
    corecore