7 research outputs found

    Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain: presence of a splice variant form in human brain

    Get PDF
    Cytochrome P-450 function as mono-oxygenases and metabolize xenobiotics. CYP1A1, a cytochrome P-450 enzyme, bioactivates polycyclic aromatic hydrocarbons to reactive metabolite(s) that bind to DNA and initiate carcinogenesis. Northern and immunoblot analyses revealed constitutive expression of Cyp1a1 and CYP1A1 in rat and human brain, respectively. CYP1A1 mRNA and protein were localized predominantly in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum and pyramidal neurons of CA1, CA2, and CA3 subfields of the hippocampus. RT-PCR analyses using RNA obtained from autopsy human brain samples demonstrated the presence of a splice variant having a deletion of 87 bp of exon 6. This splice variant was present in human brain, but not in the liver from the same individual, and was absent in rat brain and liver. Structural modeling indicated broadening of the substrate access channel in the brain variant. The study demonstrates the presence of a unique cytochrome P-450 enzyme in human brain that is generated by alternate splicing. The presence of distinct cytochrome P-450 enzymes in human brain that are different from well-characterized hepatic forms indicates that metabolism of xenobiotics including drugs could occur in brain by pathways different from those known to occur in liver

    An alternatively spliced cytochrome P4501A1 in human brain fails to bioactivate polycyclic aromatic hydrocarbons to DNA-reactive metabolites

    Get PDF
    CYP1A1, a cytochrome P450 enzyme, metabolizes polycyclic aromatic hydrocarbons to genotoxic metabolite(s) that bind to DNA and initiate carcinogenesis. RT-PCR amplification of the complete open reading frame of CYP1A1 generated an amplicon of 1593 bp having deletion of 87 bp of exon-6 that translated into functional P450 enzyme. Unlike wild type CYP1A1, exon 6 del CYP1A1 did not metabolize polycyclic aromatic hydrocarbons such as, benzo(a)pyrene to genotoxic, ultimate carcinogens that form DNA adducts. Exon 6 del CYP1A1 metabolized ethoxyresorufin (the classical substrate for CYP1A1) less efficiently compared with wild type CYP1A1 while pentoxy and benzyloxyresorufin (classical substrates for CYP2B) were dealkylated more efficiently. In silico docking showed alteration of the substrate access channel in exon 6 del CYP1A1 such that benzo(a)pyrene does not bind in any orientation that would permit the formation of carcinogenic metabolites. Genotyping revealed that the splice variant was not generated due to differences in genomic DNA sequence and the variant was present only in brain but not in liver, kidney, lung, or heart from the same individual. We provide evidence that unique P450 enzymes, generated by alternate splicing in a histiospecific manner can modify genotoxic potential of carcinogens such as benzo(a)pyrene by altering their biotransformation pathway

    Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids. Toxicol Appl Pharmacol

    No full text
    Abstract We previously reported the cDNA cloning of a new CYP4F isoform, CYP4F11. In the present study, we have expressed CYP4F11 in Saccharomyces cerevisiae and examined its catalytic properties towards endogenous eicosanoids as well as some clinically relevant drugs. CYP4F3A, also known as a leukotriene B 4 N-hydroxylase, was expressed in parallel for comparative purposes. Our results show that CYP4F11 has a very different substrate profile than CYP4F3A. CYP4F3A metabolized leukotriene B 4 , lipoxins A 4 and B 4 , and hydroxyeicosatetraenoic acids (HETEs) much more efficiently than CYP4F11. On the other hand, CYP4F11 was a better catalyst than CYP4F3A for many drugs such as erythromycin, benzphetamine, ethylmorphine, chlorpromazine, and imipramine. Erythromycin was the most efficient substrate for CYP4F11, with a K m of 125 AM and V max of 830 pmol min À1 nmol À1 P450. Structural homology modeling of the two proteins revealed some interesting differences in the substrate access channel including substrate recognition site 2 (SRS2). The model of CYP4F11 presents a more open access channel that may explain the ability to metabolize large molecules like erythromycin. Also, some wide variations in residue size, charge, and hydrophobicity in the FG loop region may contribute to differences in substrate specificity and activity between CYP4F3A and CYP4F11.

    CYP4Fs Expression in Rat Brain Correlates with Changes in LTB4 Levels after Traumatic Brain Injury

    No full text
    Cytochrome P450 (CYP) 4Fs constitute a subgroup of the cytochrome P450 superfamily and are involved in cellular protection and metabolism of numerous molecules, including drugs, toxins, and eicosanoids. CYP4Fs are widely distributed in rat brain with each isoform having a unique distribution pattern throughout different brain regions. The present study shows that traumatic brain injury (TBI) triggers inflammation and elicits changes in mRNA expression of CYP4Fs in the frontal and occipital lobes and the hippocampus. At 24 h post-injury, almost all CYP4F mRNA expression is suppressed compared with sham control throughout these three regions, while at 2 weeks post-injury, all CYP4F mRNAs increase, reaching levels higher than those at 24 h post-injury or uninjured controls. These changes in CYP4F levels inversely correlate with levels of leukotriene B4 (LTB4) levels in the brain following injury at the same time points. TBI also causes changes in CYP4F protein expression and localization around the injury site. CYP4F1 and CYP4F6 immunoreactivity increases in surrounding astrocytes, while CYP4F4 immunoreactivity shifts from endothelia of cerebral vessels to astrocytes
    corecore