23 research outputs found

    Ultimate photo-induced Kerr rotation achieved in semiconductor microcavities

    Full text link
    Photoinduced Kerr rotation by more than π/2\pi /2 radians is demonstrated in planar quantum well microcavity in the strong coupling regime. This result is close to the predicted theoretical maximum of π\pi . It is achieved by engineering microcavity parameters such that the optical impedance matching condition is reached at the smallest negative detuning between exciton resonance and the cavity mode. This ensures the optimum combination of the exciton induced optical non-linearity and the enhancement of the Kerr angle by the cavity. Comprehensive analysis of the polarization state of the light in this regime shows that both renormalization of the exciton energy and the saturation of the excitonic resonance contribute to the observed optical nonlinearities.Comment: Shortened version prepared to submit in Phys. Rev. Letter

    Local field of spin-spin interactions in the nuclear spin system of n-GaAs

    Full text link
    At low lattice temperatures the nuclear spins in a solid form a closed thermodynamic system that is well isolated from the lattice. Thermodynamic properties of the nuclear spin system are characterized by the local field of spin-spin interactions, which determines its heat capacity and the minimal achievable nuclear spin temperature in demagnetization experiments. We report the results of measurement of the local field for the nuclear spin system in GaAs, which is a model material for semiconductor spintronics. The choice of the structure, a weakly doped GaAs epitaxial layer with weak residual deformations, and of the measurement method, the adiabatic demagnetization of optically cooled nuclear spins, allowed us to refine the value of nuclear spin-spin local field, which turned out to be two times less than one previously obtained. Our experimental results are confirmed by calculations, which take into account dipole-dipole and indirect (pseudodipolar and exchange) nuclear spin interactions.Comment: 23 pages, 6 figures, 1 tabl

    Nuclear spin-lattice relaxation in p-type GaAs

    Full text link
    Spin-lattice relaxation of the nuclear spin system in p-type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variable length. This method allows us to measure the spin-lattice relaxation time T1T_1 of optically pumped nuclei "in the dark", that is, in the absence of illumination. The measured T1T_1 values fall into the sub-second time range, being three orders of magnitude shorter than in earlier studied n-type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependences of T1T_1 in p-GaAs, showing no similarity to those in n-GaAs. This unexpected behavior is explained within a developed theoretical model involving quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs.Comment: 9 pages, 8 figure

    Optics of spin-noise-induced gyrotropy of asymmetric microcavity

    Full text link
    The optical gyrotropy noise of a high-finesse semiconductor Bragg microcavity with an embedded quantum well (QW) is studied at different detunings of the photon mode and the QW exciton resonances. A strong suppression of the noise magnitude for the photon mode frequencies lying above exciton resonances is found. We show that such a critical behavior of the observed optical noise power is specific of asymmetric Fabry-Perot resonators. As follows from our analysis, at a certain level of intracavity loss, the reflectivity of the asymmetric resonator vanishes, while the polarimetric sensitivity to the gyrotropy changes dramatically when moving across the critical point. The results of model calculations are in a good agreement with our experimental data on the spin noise in a single-quantum-well microcavity and are confirmed also by the spectra of the photo-induced Kerr rotation in the pump-probe experiments.Comment: 6 pages, 5 figure

    High resolution nuclear magnetic resonance spectroscopy of highly-strained quantum dot nanostructures

    Full text link
    Much new solid state technology for single-photon sources, detectors, photovoltaics and quantum computation relies on the fabrication of strained semiconductor nanostructures. Successful development of these devices depends strongly on techniques allowing structural analysis on the nanometer scale. However, commonly used microscopy methods are destructive, leading to the loss of the important link between the obtained structural information and the electronic and optical properties of the device. Alternative non-invasive techniques such as optically detected nuclear magnetic resonance (ODNMR) so far proved difficult in semiconductor nano-structures due to significant strain-induced quadrupole broadening of the NMR spectra. Here, we develop new high sensitivity techniques that move ODNMR to a new regime, allowing high resolution spectroscopy of as few as 100000 quadrupole nuclear spins. By applying these techniques to individual strained self-assembled quantum dots, we measure strain distribution and chemical composition in the volume occupied by the confined electron. Furthermore, strain-induced spectral broadening is found to lead to suppression of nuclear spin magnetization fluctuations thus extending spin coherence times. The new ODNMR methods have potential to be applied for non-invasive investigations of a wide range of materials beyond single nano-structures, as well as address the task of understanding and control of nuclear spins on the nanoscale, one of the central problems in quantum information processing
    corecore