7 research outputs found

    Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging

    No full text
    Three-dimensional (3D) speckle-tracking echocardiography (3DSTE) is an advanced imaging technique designed for left ventricular (LV) myocardial deformation analysis based on 3D data sets. 3DSTE has the potential to overcome some of the intrinsic limitations of two-dimensional STE (2DSTE) in the assessment of complex LV myocardial mechanics, offering additional deformation parameters (such as area strain) and a comprehensive quantitation of LV geometry and function from a single 3D acquisition. Albeit being a relatively young technique still undergoing technological developments, several experimental studies and clinical investigations have already demonstrated the reliability and feasibility of 3DSTE, as well as several advantages of 3DSTE over 2DSTE. This technique has provided new insights into LV mechanics in several clinical fields, such as the objective assessment of global and regional LV function in ischemic and non-ischemic heart diseases, the evaluation of LV mechanical dyssynchrony, as well as the detection of subclinical cardiac dysfunction in cardiovascular conditions at risk of progression to overt heart failure. However, 3DSTE generally requires patient's breathhold and regular rhythm for enabling an ECG-gated multi-beat 3D acquisition. In addition, the measurements, normal limits and cut-off values pertaining to 3D strain parameters are currently vendor-specific and highly dependent on the 3D ultrasound equipment used. Technological advances with improvement in spatial and temporal resolution and a standardized methodology for obtaining vendor-independent 3D strain measurements are expected in the future for a widespread application of 3DSTE in both clinical and research arenas. The purpose of this review is to summarize currently available data on 3DSTE methodology (feasibility, accuracy and reproducibility), strengths and weaknesses with respect to 2DSTE, as well as the main clinical applications and future research priorities of this emerging technology

    Current Clinical Applications of Three-Dimensional Echocardiography: When the Technique Makes the Difference

    No full text
    Advances in ultrasound, computer, and electronics technology have permitted three-dimensional echocardiography (3DE) to become a clinically viable imaging modality, with significant impact on patient diagnosis, management, and outcome. Thanks to the inception of a fully sampled matrix transducer for transthoracic and transesophageal probes, 3DE now offers much faster and easier data acquisition, immediate display of anatomy, and the possibility of online quantitative analysis of cardiac chambers and heart valves. The clinical use of transthoracic 3DE has been primarily focused, albeit not exclusively, on the assessment of cardiac chamber volumes and function. Transesophageal 3DE has been applied mostly for assessing heart valve anatomy and function. The advantages of using 3DE to measure cardiac chamber volumes derive from the lack of geometric assumptions about their shape and the avoidance of the apical view foreshortening, which are the main shortcomings of volume calculations from two-dimensional echocardiographic views. Moreover, 3DE offers a unique realistic en face display of heart valves, congenital defects, and surrounding structures allowing a better appreciation of the dynamic functional anatomy of cardiac abnormalities in vivo. Offline quantitation of 3DE data sets has made significant contributions to our mechanistic understanding of normal and diseased heart valves, as well as of their alterations induced by surgical or interventional procedures. As reparative cardiac surgery and transcatheter procedures become more and more popular for treating structural heart disease, transesophageal 3DE has expanded its role as the premier technique for procedure planning, intra-procedural guidance, as well as for checking device function and potential complications after the procedure
    corecore