2 research outputs found
Thermal transport properties of the nanocomposite system "porous silicon/ionic liquid"
This paper investigates thermal transport in a nanocomposite system "porous
silicon matrix filled with ionic liquid". First, the thermal conductivity and
heat capacity of two imidazolium and one ammonium ionic liquids were evaluated
using the photoacoustic approach in piezoelectric configuration and
differential scanning calorimetry, respectively. Then, the thermal transport
properties of the composite system "ionic liquid confined inside porous silicon
matrix" were investigated with the photoacoustic approach in gas-microphone
configuration. It was found that a significant enhancement of the thermal
conductivity of the composite when compared to the individual components, i.e.
(i) more than two times for pristine porous silicon and (ii) more than eight
times for ionic liquids. These results provide new paths for innovative
solutions in the field of thermal management in highly efficient energy storage
devices
Some types of carbon-based nanomaterials as contrast agents for photoacoustic tomography
This paper is devoted to the study of various carbon-based nanomaterials as photoacoustic contrast agents. The research work was performed on agarose-based tissue phantom containing inclusions with and without carbon-based nanomaterials. The inclusion was created with the higher density compared to phantom in order to simulate a tumor. A specially designed photoacoustic probe was introduced for measuring a level of photoacoustic signal and its enhancement caused by the nanoinclusions presence. The probe consists of a buffer for time separation of the signal coming from the excitation source, piezoelectric transducer, and amplifier. A point-by-point measurement of the signal was performed to obtain a two-dimensional map from magnitude of photoacoustic signal and phase delay of the signal registration. From phase delay the 3D photoacoustic images were reconstructed by evaluation of the depth coordinate based on the tissue sound velocity. As an excitation source the light radiation from Nd:YAG laser with a 16 ns pulse duration and a 1064 nm wavelength was used. Firstly, we considered tissue phantom with a tumor covered by graphene oxide as a reference one. It has been shown that the use of graphene oxide leads to significant improvement of the image contrast. Further, the tumors labelled with nanodiamonds (NDs) and carbon fluoroxide (CFO) nanoparticles (NPs) were studied systematically. Amplitude of the photoacoustic signals registered from such tumor phantoms are one order of magnitude lower than the signal ensured by graphene oxide. All three types of the studied carbon-based nanomaterials (GO, NDs, CFO) give stable photoacoustic signal, this allows to consider them as good candidates for further in-vitro experiments in photoacoustic imaging for biological applications. The dependences of the signal level as a function of the NPs concentration were measured for types of NPs. Considering much more efficient penetration of NDs and CFO NPs inside the cells as well as their extremely low cytotoxicity, these both types of carbon nanomaterials could be used for further in-vivo experiments