31 research outputs found

    Exploring potential polysaccharide utilization loci involved in the degradation of typical marine seaweed polysaccharides by Bacteroides thetaiotaomicron

    Get PDF
    IntroductionResearch on the mechanism of marine polysaccharide utilization by Bacteroides thetaiotaomicron has drawn substantial attention in recent years. Derived from marine algae, the marine algae polysaccharides could serve as prebiotics to facilitate intestinal microecological balance and alleviate colonic diseases. Bacteroides thetaiotaomicron, considered the most efficient degrader of polysaccharides, relates to its capacity to degrade an extensive spectrum of complex polysaccharides. Polysaccharide utilization loci (PULs), a specialized organization of a collection of genes-encoded enzymes engaged in the breakdown and utilization of polysaccharides, make it possible for Bacteroides thetaiotaomicron to metabolize various polysaccharides. However, there is still a paucity of comprehensive studies on the procedure of polysaccharide degradation by Bacteroides thetaiotaomicron.MethodsIn the current study, the degradation of four kinds of marine algae polysaccharides, including sodium alginate, fucoidan, laminarin, and Pyropia haitanensis polysaccharides, and the underlying mechanism by Bacteroides thetaiotaomicron G4 were investigated. Pure culture of Bacteroides thetaiotaomicron G4 in a substrate supplemented with these polysaccharides were performed. The change of OD600, total carbohydrate contents, and molecular weight during this fermentation were determined. Genomic sequencing and bioinformatic analysis were further performed to elucidate the mechanisms involved. Specifically, Gene Ontology (GO) annotation, Clusters of Orthologous Groups (COG) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were utilized to identify potential target genes and pathways.ResultsUnderlying target genes and pathways were recognized by employing bioinformatic analysis. Several PULs were found that are anticipated to participate in the breakdown of these four polysaccharides. These findings may help to understand the interactions between these marine seaweed polysaccharides and gut microorganisms.DiscussionThe elucidation of polysaccharide degradation mechanisms by Bacteroides thetaiotaomicron provides valuable insights into the utilization of marine polysaccharides as prebiotics and their potential impact on gut health. Further studies are warranted to explore the specific roles of individual PULs and their contributions to polysaccharide metabolism in the gut microbiota

    The impact of climate change on Omega-3 long-chain polyunsaturated fatty acids in bivalves

    Get PDF
    Omega-3 long-chain polyunsaturated fatty acids (n-3 lc-PUFA) have many health benefits to human. increasing evidence have shown that climate change reduces the availability of plankton n-3 lc-PUFA to primary consumers which potentially reduces the availability of n-3 lc-PUFA to human. Since marine bivalves are an important source of n-3 lc-PUFA for human beings, and bivalve aquaculture completely depends on phytoplankton in ambient water as food, it is important to understand the impact of climate change on the lipid nutritional quality of bivalves. in this study, fatty acid profile of different bivalves (mussels, oysters, clams, scallops and cockles) from different regions (tropical, subtropical and temperate) and time (before 1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010, 2011–2015, 2016–2020) were extracted from published literature to calculate various lipid nutritional quality indicators. the results of this study revealed that the effects of global warming and declines in aragonite saturation state on the lipid content and lipid indices of bivalves are highly dependent on the geographical region and bivalves. in general, global warming has the largest negative impact on the lipid content and indices of temperate bivalves, including decreasing the PUFA/SFA, ePA + DHA and n-3/n-6. However, global warming has a much smaller negative impact on lipid content and lipid indices in other regions. the declines of aragonite saturation state in seawater promotes the accumulation of lipid content in tropical and subtropical bivalves, but it compromised the PUFA/SFA, ePA + DHA and n-3/n-6 of bivalves in all regions. the findings of this study not only fill the knowledge gap of the impact of climate change on the lipid nutritional quality of bivalves, but also provide guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change

    Preparation, Structural Characterisation, and Bioactivities of Fructans: A Review

    No full text
    Polysaccharides are important components of higher plants and have attracted increasing attention due to their many nutraceutical benefits in humans. Fructans, heterogeneous fructose polymers that serve as storage carbohydrates in various plants, represent one of the most important types of natural polysaccharides. Fructans have various physiological and therapeutic effects, which are beneficial to health, and have the ability to prevent or treat various diseases, allowing their wide use in the food, nutraceutical, and pharmaceutical industries. This article reviews the occurrence, metabolism, preparation, characterisation, analysis, and bioactivity of fructans. Further, their molecular weight, monosaccharide composition, linkages, and structural determination are described. Taken together, this review provides a theoretical foundation for further research into the structure–function relationships of fructans, as well as valuable new information and directions for further research and application of fructans in functional foods

    Unraveling the chemical identification and biological potential of the genus Asparagopsis: a comprehensive review

    No full text
    The genus Asparagopsis has garnered escalating attention in the spheres of marine biology and biotechnology due to its diverse chemical composition and promising biological capabilities. This all-encompassing review is dedicated to conducting an exhaustive inquiry into the chemical identification and biological importance of Asparagopsis species. By meticulously dissecting the array of chemical compounds found in genus Asparagopsis, encompassing polysaccharides, lipids, proteins, sterols, and bromoform. We unveil their potential utility in realms such as biomedicine, biotechnology, and the conservation of the environment. Furthermore, we delve into the bioactive attributes inherent in these compounds, encompassing effects such as antioxidative, antimicrobial, and anti-inflammatory properties, as well as their conceivable role in cancer treatments. Furthermore, this review underscores the environmental pertinence of genus Asparagopsis, particularly its capacity to mitigate climate change through the generation of compounds that alleviate greenhouse gas effects. Additionally, we delve into the economic facets of this genus, spanning from its integration into food additives to its contributions in cosmetics and sustainable agriculture. This comprehensive review furnishes a multi-faceted comprehension of Asparagopsis, illuminating its chemical diversity and biological significance, thereby paving the way for further explorations into its potential contributions across a spectrum of sectors

    Modification and comparison of three Gracilaria spp. agarose with methylation for promotion of its gelling properties

    No full text
    Abstract In order to improve the gelling properties of agarose, we modified it by methylation. The agarose was prepared from Gracilaria asiatica, G. bailinae, and G. lemaneiformis with alkaline, treated with diatomaceous earth and activated carbon, and anhydrous alcohol precipitation. The methylation reaction process of agarose was performed with dimethyl sulfate while the chemical structure of low-gelling temperature of agarose was also studied by 13C-NMR and FT-IR spectra. Results showed that the quality of agarose from G. asiatica is optimal. Its electroendosmosis is 0.116, sulfate content is 0.128%, and its gel strength (1.5%, w/v) is 1024 g cm−2, like those of the Sigma product (A9539). The gelling temperature, melting temperature, and gel strength of the low-gelling temperature agarose is 28.3, 67.0 °C, and 272.5 g cm−2, respectively. FT-IR Spectra and 13C-NMR spectra also showed that agarose was successfully methylated. Overall, this work suggests that low-gelling temperature agarose may have potential uses as an agar embedding material in various applications such as biomedicine, food, microbiology, and pharmaceutical

    Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities

    No full text
    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs’ biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated

    Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System

    No full text
    In this study, a simple aqueous two-phase system (ATPS) was employed for concurrent purification of oyster polysaccharides. The chemical structure and anti-tumor activities of purified oyster polysaccharides (OP-1) were also investigated. Under optimal ATPS conditions, oyster polysaccharides can be partitioned in the bottom phase with 67.02% extraction efficiency. The molecular weight of OP-1 was determined as 3480 Da. OP-1 is a (1→4)-α-d-glucosyl backbone and branching points located at O-3 of glucose with a terminal-d-Glcp. The anti-tumor activity assay showed that OP-1 exhibited good activities, including promotion of splenocyte proliferation, IL-2 release, and inhibition of HepG2 cell proliferation. Additionally, OP-1 had no in vivo toxicity. This finding suggests that ATPS is a much simpler and greener system, and it opens up new possibilities in the large-scale separation of active polysaccharides from oysters. OP-1 could be used by the health food and pharmaceutical therapies as potential anti-cancer adjuvants

    A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota

    No full text
    Cardiovascular disease (CVD) is the number one cause of death worldwide. Recent evidence has demonstrated an association between the gut microbiota and CVD, including heart failure, cerebrovascular illness, hypertension, and stroke. Marine algal polysaccharides (MAPs) are valuable natural sources of diverse bioactive compounds. MAPs have many pharmaceutical activities, including antioxidant, anti-inflammatory, immunomodulatory, and antidiabetic effects. Most MAPs are not utilized in the upper gastrointestinal tract; however, they are fermented by intestinal flora. The relationship between MAPs and the intestinal microbiota has drawn attention in CVD research. Hence, this review highlights the main action by which MAPs are known to affect CVD by maintaining homeostasis in the gut microbiome and producing gut microbiota-generated functional metabolites and short chain fatty acids. In addition, the effects of trimethylamine N-oxide on the gut microbiota composition, bile acid signaling properties, and CVD prevention are also discussed. This review supports the idea that focusing on the interactions between the host and gut microbiota may be promising for the prevention or treatment of CVD. MAPs are a potential sustainable source for the production of functional foods or nutraceutical products for preventing or treating CVD
    corecore