5,025 research outputs found

    Quantum contact interactions

    Get PDF
    The existence of several exotic phenomena, such as duality and spectral anholonomy is pointed out in one-dimensional quantum wire with a single defect. The topological structure in the spectral space which is behind these phenomena is identified.Comment: A lecture presented at the 2nd Winter Institute on Foundations of Quantum Theory and Quantum Optics (WINST02), Jan. 2-11, 2002, S.N.Bose Institute, Calcutta, India: 8 pages latex with Indian Acad. Sci. style fil

    Classical Aspects of Quantum Walls in One Dimension

    Get PDF
    We investigate the system of a particle moving on a half line x >= 0 under the general walls at x = 0 that are permitted quantum mechanically. These quantum walls, characterized by a parameter L, are shown to be realized as a limit of regularized potentials. We then study the classical aspects of the quantum walls, by seeking a classical counterpart which admits the same time delay in scattering with the quantum wall, and also by examining the WKB-exactness of the transition kernel based on the regularized potentials. It is shown that no classical counterpart exists for walls with L < 0, and that the WKB-exactness can hold only for L = 0 and L = infinity.Comment: TeX, 21 pages, 4 figures. v2: some parts of the text improved, new and improved figure

    Spectral Properties of Three-Dimensional Quantum Billiards with a Pointlike Scatterer

    Full text link
    We examine the spectral properties of three-dimensional quantum billiards with a single pointlike scatterer inside. It is found that the spectrum shows chaotic (random-matrix-like) characteristics when the inverse of the formal strength vˉ1\bar{v}^{-1} is within a band whose width increases parabolically as a function of the energy. This implies that the spectrum becomes random-matrix-like at very high energy irrespective to the value of the formal strength. The predictions are confirmed by numerical experiments with a rectangular box. The findings for a pointlike scatterer are applied to the case for a small but finite-size impurity. We clarify the proper procedure for its zero-size limit which involves non-trivial divergence. The previously known results in one and two-dimensional quantum billiards with small impurities inside are also reviewed from the present perspective.Comment: 12 pages 'pr' double column format REVTeX, 6 inset epsf figure

    Moebius Structure of the Spectral Space of Schroedinger Operators with Point Interaction

    Full text link
    The Schroedinger operator with point interaction in one dimension has a U(2) family of self-adjoint extensions. We study the spectrum of the operator and show that (i) the spectrum is uniquely determined by the eigenvalues of the matrix U belonging to U(2) that characterizes the extension, and that (ii) the space of distinct spectra is given by the orbifold T^2/Z_2 which is a Moebius strip with boundary. We employ a parametrization of U(2) that admits a direct physical interpretation and furnishes a coherent framework to realize the spectral duality and anholonomy recently found. This allows us to find that (iii) physically distinct point interactions form a three-parameter quotient space of the U(2) family.Comment: 16 pages, 2 figure

    Equivalence of Local and Separable Realizations of the Discontinuity-Inducing Contact Interaction and Its Perturbative Renormalizability

    Full text link
    We prove that the separable and local approximations of the discontinuity-inducing zero-range interaction in one-dimensional quantum mechanics are equivalent. We further show that the interaction allows the perturbative treatment through the coupling renormalization. Keywords: one-dimensional system, generalized contact interaction, renormalization, perturbative expansion. PACS Nos: 3.65.-w, 11.10.Gh, 31.15.MdComment: ReVTeX 7pgs, doubl column, no figure, See also the website http://www.mech.kochi-tech.ac.jp/cheon
    corecore