12 research outputs found

    Deep Convolutional Generative Adversarial Networks-Based Data Augmentation Method for Classifying Class-Imbalanced Defect Patterns in Wafer Bin Map

    No full text
    In the semiconductor industry, achieving a high production yield is a very important issue. Wafer bin maps (WBMs) provide critical information for identifying anomalies in the manufacturing process. A WBM forms a certain defect pattern according to the error occurring during the process, and by accurately classifying the defect pattern existing in the WBM, the root causes of the anomalies that have occurred during the process can be inferred. Therefore, WBM defect pattern recognition and classification tasks are important for improving yield. In this paper, we propose a deep convolutional generative adversarial network (DCGAN)-based data augmentation method to improve the accuracy of a convolutional neural network (CNN)-based defect pattern classifier in the presence of extremely imbalanced data. The proposed method forms various defect patterns compared to the data augmentation method by using a convolutional autoencoder (CAE), and the formed defect patterns are classified into the same pattern as the original pattern through a CNN-based defect pattern classifier. Here, we introduce a new quantitative index called PGI to compare the effectiveness of the augmented models, and propose a masking process to refine the augmented images. The proposed method was tested using the WM-811k dataset. The proposed method helps to improve the classification performance of the pattern classifier by effectively solving the data imbalance issue compared to the CAE-based augmentation method. The experimental results showed that the proposed method improved the accuracy of each defect pattern by about 5.31% on average compared to the CAE-based augmentation method

    Fi-Vi: Large-Area Indoor Localization Scheme Combining ML/DL-Based Wireless Fingerprinting and Visual Positioning

    No full text
    Due to recent technological developments such as online navigation, augmented reality (AR), virtual reality (VR), and digital twins, and the high demand from users for various location-based services (LBS), research on location estimation techniques is being actively conducted. As a result, there is an increasing demand for effective localization technologies that can be used in places where the use of Global Positioning System (GPS) is limited, especially in indoor spaces with very large areas. In this paper, a new structure for an indoor localization system in which wireless fingerprinting and visual-based positioning are hierarchically combined—the so-called Fi-Vi system—is proposed. This scheme consists of two steps: fingerprint-based localization (FBL) followed by visual-based localization (VBL). In the first positioning step (i.e., the FBL stage), the entire area of a significantly broad range for localization is divided into multiple regions, the size and the number of which depend on the target accuracy of this step. Moreover, a machine-learning (ML) or deep-learning (DL) model trained on a Wi-Fi fingerprint radio map selects suitable candidate regions among these multiple regions. In the second positioning step (i.e., the VBL stage), the final location is precisely estimated through visual-based positioning based on the received information regarding the candidate regions. The FBL stage uses a sparse radio map (SRM) for fingerprinting, which can be constructed with relatively little effort and cost compared to radio maps used in conventional fingerprinting methods. As a result, it can be easily combined with existing visual-based positioning methods with almost negligible implementation complexity. Because of the hierarchical structure and SRM, the proposed scheme shows a significant performance improvement in terms of computational load and time required for indoor localization compared to the use of the existing visual-based indoor positioning method alone. In addition, it provides high accuracy and robustness even in a dynamically changing indoor wireless environment where conventional wireless fingerprinting methods show significant performance degradation. Finally, the performance analysis of the proposed scheme was performed using the UJIIndoorLoc dataset. Experiments and theoretical analysis have shown that when the estimation accuracy of the candidate region for the test dataset was achieved at about 99% through the FBL stage, the average computational amount of the VBL stage for the final position estimation was only about 16% of that in cases where the visual-based positioning method was used alone

    Adaptive Multi-Node Multiple Input and Multiple Output (MIMO) Transmission for Mobile Wireless Multimedia Sensor Networks

    Get PDF
    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase

    K-FL: Kalman Filter-Based Clustering Federated Learning Method

    No full text
    Federated learning is a distributed machine learning framework that enables a large number of devices to cooperatively train a model without data sharing. However, because federated learning trains a model using non-independent and identically distributed (non-IID) data stored at local devices, the weight divergence causes a performance loss. This paper focuses on solving the non-IID problems and proposes Kalman filter-based clustering federated learning method called K-FL to get performance gain by providing a specific model with low variance to the device. To the best of our knowledge, it is the first clustering federated learning method that can train a model requiring fewer communication rounds under the premise that non-IID environment without any prior knowledge and an initial value set by the user. From simulations, we demonstrate that the proposed K-FL can train a model much faster, requiring fewer communication rounds than FedAvg and LG-FedAvg when testing neural networks using the MNIST, FMNIST, and CIFAR-10 datasets. As a numerical result, it is shown that the accuracy is improved in all datasets while the computational time cost is reduced by 1.43×1.43\times , 1.67×1.67\times , and 1.63×1.63\times compared to FedAvg, respectively

    Fairness-Based Multi-AP Coordination Using Federated Learning in Wi-Fi 7

    No full text
    Federated learning is a type of distributed machine learning in which models learn by using large-scale decentralized data between servers and devices. In a short-range wireless communication environment, it can be difficult to apply federated learning because the number of devices in one access point (AP) is small, which can be small enough to perform federated learning. Therefore, it means that the minimum number of devices required to perform federated learning cannot be matched by the devices included in one AP environment. To do this, we propose to obtain a uniform global model regardless of data distribution by considering the multi-AP coordination characteristics of IEEE 802.11be in a decentralized federated learning environment. The proposed method can solve the imbalance in data transmission due to the non-independent and identically distributed (non-IID) environment in a decentralized federated learning environment. In addition, we can also ensure the fairness of multi-APs and determine the update criteria for newly elected primary-APs by considering the learning training time of multi-APs and energy consumption of grouped devices performing federated learning. Thus, our proposed method can determine the primary-AP according to the number of devices participating in the federated learning in each AP during the initial federated learning to consider the communication efficiency. After the initial federated learning, fairness can be guaranteed by determining the primary-AP through the training time of each AP. As a result of performing decentralized federated learning using the MNIST and FMNIST dataset, the proposed method showed up to a 97.6% prediction accuracy. In other words, it can be seen that, even in a non-IID multi-AP environment, the update of the global model for federated learning is performed fairly

    Effect of carrier frequency offset on performance of MC-CDMA systems

    No full text

    Performance Analysis of the D-STTD Communication System with AMC Scheme

    No full text

    CeRA-eSP: Code-Expanded Random Access to Enhance Success Probability of Massive MTC

    No full text
    With the growing interest in the Internet of Things (IoT), research on massive machine-type communication (mMTC) services is being actively promoted. Because mMTC services are required to serve a large number of devices simultaneously, a lack of resources during initial access can be a significant problem when providing mMTC services in cellular networks. Various studies on efficient preamble transmission have been conducted to solve the random access problem of mMTC services. However, supporting a large number of devices simultaneously with limited resources is a challenging problem. In this study, we investigate code-expanded random access (CeRA), which extends the limited preamble resources to the code domain to decrease the high collision rate. To solve the existing CeRA phantom codeword and physical uplink shared channel (PUSCH) resource shortage problems, we propose an optimal preamble codeword set selection algorithm based on mathematical analysis. The simulation results indicate that the proposed code-expanded random access scheme to enhance success probability (CeRA-eSP) achieves a higher random access success rate with a lower access delay compared to the existing random access schemes
    corecore