137 research outputs found

    On Path Memory in List Successive Cancellation Decoder of Polar Codes

    Full text link
    Polar code is a breakthrough in coding theory. Using list successive cancellation decoding with large list size L, polar codes can achieve excellent error correction performance. The L partial decoded vectors are stored in the path memory and updated according to the results of list management. In the state-of-the-art designs, the memories are implemented with registers and a large crossbar is used for copying the partial decoded vectors from one block of memory to another during the update. The architectures are quite area-costly when the code length and list size are large. To solve this problem, we propose two optimization schemes for the path memory in this work. First, a folded path memory architecture is presented to reduce the area cost. Second, we show a scheme that the path memory can be totally removed from the architecture. Experimental results show that these schemes effectively reduce the area of path memory.Comment: 5 pages, 6 figures, 2 table

    A Two-staged Adaptive Successive Cancellation List Decoding for Polar Codes

    Full text link
    Polar codes achieve outstanding error correction performance when using successive cancellation list (SCL) decoding with cyclic redundancy check. A larger list size brings better decoding performance and is essential for practical applications such as 5G communication networks. However, the decoding speed of SCL decreases with increased list size. Adaptive SCL (ASCL) decoding can greatly enhance the decoding speed, but the decoding latency for each codeword is different so A-SCL is not a good choice for hardware-based applications. In this paper, a hardware-friendly two-staged adaptive SCL (TA-SCL) decoding algorithm is proposed such that a constant input data rate is supported even if the list size for each codeword is different. A mathematical model based on Markov chain is derived to explore the bounds of its decoding performance. Simulation results show that the throughput of TA-SCL is tripled for good channel conditions with negligible performance degradation and hardware overhead.Comment: 5 pages, 7 figures, 1 table. Accepted by ISCAS 201

    An Implementation of List Successive Cancellation Decoder with Large List Size for Polar Codes

    Full text link
    Polar codes are the first class of forward error correction (FEC) codes with a provably capacity-achieving capability. Using list successive cancellation decoding (LSCD) with a large list size, the error correction performance of polar codes exceeds other well-known FEC codes. However, the hardware complexity of LSCD rapidly increases with the list size, which incurs high usage of the resources on the field programmable gate array (FPGA) and significantly impedes the practical deployment of polar codes. To alleviate the high complexity, in this paper, two low-complexity decoding schemes and the corresponding architectures for LSCD targeting FPGA implementation are proposed. The architecture is implemented in an Altera Stratix V FPGA. Measurement results show that, even with a list size of 32, the architecture is able to decode a codeword of 4096-bit polar code within 150 us, achieving a throughput of 27MbpsComment: 4 pages, 4 figures, 4 tables, Published in 27th International Conference on Field Programmable Logic and Applications (FPL), 201

    A penalty ADMM with quantized communication for distributed optimization over multi-agent systems

    Get PDF
    summary:In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an O(1k)O(\frac{1}{k}) convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions

    Traffic-Aware Hierarchical Beam Selection for Cell-Free Massive MIMO

    Full text link
    Beam selection for joint transmission in cell-free massive multi-input multi-output systems faces the problem of extremely high training overhead and computational complexity. The traffic-aware quality of service additionally complicates the beam selection problem. To address this issue, we propose a traffic-aware hierarchical beam selection scheme performed in a dual timescale. In the long-timescale, the central processing unit collects wide beam responses from base stations (BSs) to predict the power profile in the narrow beam space with a convolutional neural network, based on which the cascaded multiple-BS beam space is carefully pruned. In the short-timescale, we introduce a centralized reinforcement learning (RL) algorithm to maximize the satisfaction rate of delay w.r.t. beam selection within multiple consecutive time slots. Moreover, we put forward three scalable distributed algorithms including hierarchical distributed Lyapunov optimization, fully distributed RL, and centralized training with decentralized execution of RL to achieve better scalability and better tradeoff between the performance and the execution signal overhead. Numerical results demonstrate that the proposed schemes significantly reduce both model training cost and beam training overhead and are easier to meet the user-specific delay requirement, compared to existing methods.Comment: 13 pages, 11 figures, part of this work has been accepted by the IEEE International Conference on Wireless Communications and Signal Processing (WCSP) 202

    Anisotropic and high thermal conductivity in monolayer quasi-hexagonal fullerene: A comparative study against bulk phase fullerene

    Full text link
    Recently a novel two-dimensional (2D) C60_{60} based crystal called quasi-hexagonal-phase fullerene (QHPF) has been fabricated and demonstrated to be a promising candidate for 2D electronic devices [Hou et al. Nature 606, 507-510 (2022)]. We construct an accurate and transferable machine-learned potential to study heat transport and related properties of this material, with a comparison to the face-centered-cubic bulk-phase fullerene (BPF). Using the homogeneous nonequilibrium molecular dynamics and the related spectral decomposition methods, we show that the thermal conductivity in QHPF is anisotropic, which is 137(7) W/mK at 300 K in the direction parallel to the cycloaddition bonds and 102(3) W/mK in the perpendicular in-plane direction. By contrast, the thermal conductivity in BPF is isotropic and is only 0.45(5) W/mK. We show that the inter-molecular covalent bonding in QHPF plays a crucial role in enhancing the thermal conductivity in QHPF as compared to that in BPF. The heat transport properties as characterized in this work will be useful for the application of QHPF as novel 2D electronic devices.Comment: 11 pages, 12 figure
    • …
    corecore