89 research outputs found

    Long Term Spectral Evolution of Tidal Disruption Candidates Selected by Strong Coronal Lines

    Get PDF
    We present results of follow-up optical spectroscopic observations of seven rare, extreme coronal line emitting galaxies reported by Wang et al. (2012) with Multi-Mirror Telescope (MMT). Large variations in coronal lines are found in four objects, making them strong candidates of tidal disruption events (TDE). For the four TDE candidates, all the coronal lines with ionization status higher than [Fe VII] disappear within 5-9 years. The [Fe VII] faded by a factor of about five in one object (J0952+2143) within 4 years, whereas emerged in other two without them previously. A strong increment in the [O III] flux is observed, shifting the line ratios towards the loci of active galactic nucleus on the BPT diagrams. Surprisingly, we detect a non-canonical [O III]5007/[O III]4959 2 in two objects, indicating a large column density of O2+^{2+} and thus probably optical thick gas. This also requires a very large ionization parameter and relatively soft ionizing spectral energy distribution (e.g. blackbody with T<5×104T < 5\times 10^4 K). Our observations can be explained as echoing of a strong ultraviolet to soft X-ray flare caused by tidal disruption events, on molecular clouds in the inner parsecs of the galactic nuclei. Re-analyzing the SDSS spectra reveals double-peaked or strongly blue-shouldered broad lines in three of the objects, which disappeared in the MMT spectra in two objects, and faded by a factor of ten in 8 years in the remaining object with a decrease in both the line width and centroid offset. We interpret these broad lines as arising from decelerating biconical outflows. Our results demonstrate that the signatures of echoing can persist for as long as ten years, and can be used to probe the gas environment in the quiescent galactic nuclei.Comment: 30 Pages, 10 Figures, 2 Tables, Accepted for Publication in Ap

    Long Fading Mid-Infrared Emission in Transient Coronal Line Emitters: Dust Echo of Tidal Disruption Flare

    Full text link
    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4×10424\times 10^{42} and 2×10432\times 10^{43} erg~s−1^{-1} and dust temperature in the range of 570-800K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decreases with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 104410^{44} erg s−1^{-1} and for warm dust masses to be in the range of 0.05-1.3 Msun within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment

    Mid-infrared variability of changing-look AGN

    Get PDF
    It is known that some active galactic nuclei (AGNs) transited from type 1 to type 2 or vice versa. There are two explanations for the so-called changing look AGNs: one is the dramatic change of the obscuration along the line-of-sight, the other is the variation of accretion rate. In this paper, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing look AGNs using WISE and newly released NEOWISE-R data. The mid-infrared light curves of 10 objects echoes the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather supports the scheme of dramatic change in the accretion rate.Comment: Published by ApjL, 7 pages, 3 figures, 2 table

    Maximum relative excitation of a specific vibrational mode via optimum laser pulse duration

    Get PDF
    For molecules and materials responding to femtosecond-scale optical laser pulses, we predict maximum relative excitation of a Raman-active vibrational mode with period T when the pulse has an FWHM duration of 0.42 T. This result follows from a general analytical model, and is precisely confirmed by detailed density-functional-based dynamical simulations for C60 and a carbon nanotube, which include anharmonicity, nonlinearity, no assumptions about the polarizability tensor, and no averaging over rapid oscillations within the pulse. The mode specificity is, of course, best at low temperature and for pulses that are electronically off-resonance, and the energy deposited in any mode is proportional to the fourth power of the electric field.Comment: 5 pages, 4 figure

    Road network detection based on improved FLICM-MRF method using high resolution SAR images

    Get PDF
    The automatic detection of road network from satellite and aerial images is highly significant in many actual applications, for instance, urban traffic measurement, military emergency response, and vehicle target tracking. Compared with other high-resolution satellite remote sensing images, high-resolution synthetic aperture radar (SAR) has become a popular research perspective for road detection owing to its insensitivity to the atmosphere and sun-illumination. However, the method of road network detection is still lagging due to the strong multiplicative speckle noise and complex background interference, causing the loss and break in the road segment extraction results. Aiming to solve this problem, a three-step road network detection framework is proposed. In the first step, the road segment candidates are extracted by the Fuzzy Local Information C-Means (FLICM) algorithm based on the gray-level co-occurrence matrix(GLCM) with Markov Random Fields (MRF), and it contains an adaptive parameter selection procedure which is presented for adjusting joint clustering parameters. In order to reduce false segments, we perform the local processing which combines the morphological operation, linearity index, and local Hough transform in the second step. Finally, as for the global road segment connection, we propose an improved region growing algorithm which fully considering the rationality of road elements to gain the road network. Compared with the traditional region growing algorithm, the proposed method can effectively promote the improvement of the integrity of the road network detection. Moreover, the performance of the proposed method is evaluated by comparing the results with the ground truth road map and the evaluation index including the completeness, correctness, and quality factor. In experiments, the algorithm has been verified with the SAR images from the different resolutions of the GF-3 satellite SAR image. The results of the various real images demonstrate that the proposed algorithm has improved considerably the adaptability and efficiency of road detection compared with other methods

    Discovery of a Mid-infrared Echo from the TDE candidate in the nucleus of ULIRG F01004-2237

    Get PDF
    We present the mid-infrared (MIR) light curves (LCs) of a tidal disruption event (TDE) candidate in the center of a nearby ultraluminous infrared galaxy (ULIRG) F01004-2237 using archival {\it WISE} and {\it NEOWISE} data from 2010 to 2016. At the peak of the optical flare, F01004-2237 was IR quiescent. About three years later, its MIR fluxes have shown a steady increase, rising by 1.34 and 1.04 mag in 3.43.4 and 4.6μ4.6\mum up to the end of 2016. The host-subtracted MIR peak luminosity is 2−3×10442-3\times10^{44}\,erg\,s−1^{-1}. We interpret the MIR LCs as an infrared echo, i.e. dust reprocessed emission of the optical flare. Fitting the MIR LCs using our dust model, we infer a dust torus of the size of a few parsecs at some inclined angle. The derived dust temperatures range from 590−850590-850\,K, and the warm dust mass is ∼7 M⊙\sim7\,M_{\odot}. Such a large mass implies that the dust cannot be newly formed. We also derive the UV luminosity of 4−11×10444-11\times10^{44}\,erg\,s−1^{-1}. The inferred total IR energy is 1−2×10521-2\times10^{52}\,erg, suggesting a large dust covering factor. Finally, our dust model suggests that the long tail of the optical flare could be due to dust scattering

    Mid-infrared flare of TDE candidate PS16dtm: dust echo and implications for the spectral evolution

    Get PDF
    PS16dtm was classified as a candidate tidal disruption event (TDE) in a dwarf Seyfert 1 galaxy with low-mass black hole (∼106M⊙\sim10^6M\odot) and has presented various intriguing photometric and spectra characteristics. Using the archival WISE and the newly released NEOWISE data, we found PS16dtm is experiencing a mid-infrared (MIR) flare which started ∼11\sim11 days before the first optical detection. Interpreting the MIR flare as a dust echo requires close pre-existing dust with a high covering factor, and suggests the optical flare may have brightened slowly for some time before it became bright detectable from the ground. More evidence is given at the later epochs. At the peak of the optical light curve, the new inner radius of the dust torus has grown to much larger size, a factor of 7 of the initial radius due to strong radiation field. At ∼150\sim150 days after the first optical detection, the dust temperature has dropped well below the sublimation temperature. Other peculiar spectral features shown by PS16dtm are the transient, prominent FeII emission lines and outflows indicated by broad absorption lines detected during the optical flare. Our model explains the enhanced FeII emission from iron newly released from the evaporated dust. The observed broad absorption line outflow could be explained by accelerated gas in the dust torus due to the radiation pressure.Comment: Accepted by ApJ, 5 figure

    Discovery of An Active Intermediate-Mass Black Hole Candidate in the Barred Bulgeless Galaxy NGC 3319

    Full text link
    We report the discovery of an active intermediate-mass black hole (IMBH) candidate in the center of nearby barred bulgeless galaxy NGC 3319\rm NGC~3319. The point X-ray source revealed by archival Chandra and XMM-Newton observations is spatially coincident with the optical and UV galactic nuclei from Hubble Space Telescope observations. The spectral energy distribution derived from the unresolved X-ray and UV-optical flux is comparable with active galactic nuclei (AGNs) rather than ultra-luminous X-ray sources, although its bolometric luminosity is only 3.6×1040 erg s−13.6\times10^{40}~\rm erg~s^{-1}. Assuming an Eddington ratio range between 0.001 and 1, the black hole mass (M_\rm{BH}) will be located at 3×102−3×105 M⊙3\times10^2-3\times10^5~M_{\odot}, placing it in the so-called IMBH regime and could be the one of the lowest reported so far. Estimates from other approaches (e.g., fundamental plane, X-ray variability) also suggest M_\rm{BH}\lesssim10^5~M_{\odot}.Similar to other BHs in bulgeless galaxies, the discovered IMBH resides in a nuclear star cluster with mass of ∼6×106 M⊙\sim6\times10^6~M_{\odot}. The detection of such a low-mass BH offers us an ideal chance to study the formation and early growth of SMBH seeds, which may result from the bar-driven inflow in late-type galaxies with a prominent bar such as NGC 3319\rm NGC~3319.Comment: ApJ accepted, 2 tables, 6 figure
    • …
    corecore