2 research outputs found

    A tumor-penetrable drug nanococktail made from human histones for interventional nucleus-targeted chemophotothermal therapy of drug-resistant tumors

    No full text
    Nanoparticle-based chemophotothermal therapy (CPT) is a promising treatment for multidrug resistant tumors. In this study, a drug nanococktail of DIR825@histone was developed by employing doxorubicin (DOX), NIR dye IR825 and human histones for interventional nucleus-targeted CPT of multidrug resistant tumors with an interventional laser. After localized intervention, DIR825@histone penetrated tumor tissues by transcytosis, efficiently entered tumor cells and targeted the cell nuclei. DIR825@histone also exhibited good photothermal performance and thermal-triggered drug release. Efficient multidrug resistant tumor inhibition was achieved by enhanced CPT sensitization and MDR reversion via nuclear targeting. Moreover, an interventional laser assisted DIR825@histone in inhibiting multidrug resistant tumors by promoting the sufficient delivery of laser energy inside the tumor while reducing skin injury. Therefore, DIR825@histone together with this interventional nucleus-targeted CPT strategy holds great promise for treating multidrug resistant tumors

    Uncovering the Fate and Risks of Intravenously Injected Prussian Blue Nanoparticles in mice by an Integrated Methodology of Toxicology, Pharmacokinetics, Proteomics, and Metabolomics

    No full text
    Abstract Background Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics. Results General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection. Pharmacokinetic studies revealed that intravenously administered PB NPs (20 mg/kg) underwent fast clearance from blood, highly accumulated in the liver and lungs of mice, and finally cleared from tissues. By further integrated proteomics and metabolomics analysis, we found that protein expression and metabolite levels changed significantly in the liver and lungs of mice due to the high accumulation of PB NPs, leading to slight inflammatory responses and intracellular oxidative stress. Conclusions Collectively, our integrated experimental data imply that the high accumulation of PB NPs may cause potential risks to the liver and lungs of mice, which will provide detailed references and guidance for further clinical application of PB NPs in the future
    corecore