136 research outputs found
Improving Energy Efficiency Through Multimode Transmission in the Downlink MIMO Systems
Adaptively adjusting system parameters including bandwidth, transmit power
and mode to maximize the "Bits per-Joule" energy efficiency (BPJ-EE) in the
downlink MIMO systems with imperfect channel state information at the
transmitter (CSIT) is considered in this paper. By mode we refer to choice of
transmission schemes i.e. singular value decomposition (SVD) or block
diagonalization (BD), active transmit/receive antenna number and active user
number. We derive optimal bandwidth and transmit power for each dedicated mode
at first. During the derivation, accurate capacity estimation strategies are
proposed to cope with the imperfect CSIT caused capacity prediction problem.
Then, an ergodic capacity based mode switching strategy is proposed to further
improve the BPJ-EE, which provides insights on the preferred mode under given
scenarios. Mode switching compromises different power parts, exploits the
tradeoff between the multiplexing gain and the imperfect CSIT caused inter-user
interference, improves the BPJ-EE significantly.Comment: 19 pages, 10 figures, EURASIP Journal on Wireless Communications and
Networking; EURASIP Journal on Wireless Communications and Networking (2011)
2011:20
Hybrid Transceiver Optimization for Multi-Hop Communications
Multi-hop communication with the aid of large-scale antenna arrays will play
a vital role in future emergence communication systems. In this paper, we
investigate amplify-and-forward based and multiple-input multiple-output
assisted multi-hop communication, in which all nodes employ hybrid
transceivers. Moreover, channel errors are taken into account in our hybrid
transceiver design. Based on the matrix-monotonic optimization framework, the
optimal structures of the robust hybrid transceivers are derived. By utilizing
these optimal structures, the optimizations of analog transceivers and digital
transceivers can be separated without loss of optimality. This fact greatly
simplifies the joint optimization of analog and digital transceivers. Since the
optimization of analog transceivers under unit-modulus constraints is
non-convex, a projection type algorithm is proposed for analog transceiver
optimization to overcome this difficulty. Based on the derived analog
transceivers, the optimal digital transceivers can then be derived using
matrix-monotonic optimization. Numeral results obtained demonstrate the
performance advantages of the proposed hybrid transceiver designs over other
existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE
Journal on Selected Areas in Communications (special issue on Multiple
Antenna Technologies for Beyond 5G
Facial expression aftereffect revealed by adaption to emotion-invisible dynamic bubbled faces
Visual adaptation is a powerful tool to probe the short-term plasticity of the visual system. Adapting to local features such as the oriented lines can distort our judgment of subsequently presented lines, the tilt aftereffect. The tilt aftereffect is believed to be processed at the low-level of the visual cortex, such as V1. Adaptation to faces, on the other hand, can produce significant aftereffects in high-level traits such as identity, expression, and ethnicity. However, whether face adaptation necessitate awareness of face features is debatable. In the current study, we investigated whether facial expression aftereffects (FEAE) can be generated by partially visible faces. We first generated partially visible faces using the bubbles technique, in which the face was seen through randomly positioned circular apertures, and selected the bubbled faces for which the subjects were unable to identify happy or sad expressions. When the subjects adapted to static displays of these partial faces, no significant FEAE was found. However, when the subjects adapted to a dynamic video display of a series of different partial faces, a significant FEAE was observed. In both conditions, subjects could not identify facial expression in the individual adapting faces. These results suggest that our visual system is able to integrate unrecognizable partial faces over a short period of time and that the integrated percept affects our judgment on subsequently presented faces. We conclude that FEAE can be generated by partial face with little facial expression cues, implying that our cognitive system fills-in the missing parts during adaptation, or the subcortical structures are activated by the bubbled faces without conscious recognition of emotion during adaptation
- …