49 research outputs found

    The feasibility and safety of his-purkinje conduction system pacing in patients with heart failure with severely reduced ejection fraction

    Get PDF
    ObjectiveThe purpose of this study was to evaluate the feasibility and outcomes of conduction system pacing (CSP) in patients with heart failure (HF) who had a severely reduced left ventricular ejection fraction (LVEF) of less than 30% (HFsrEF).MethodsBetween January 2018 and December 2020, all consecutive HF patients with LVEF < 30% who underwent CSP at our center were evaluated. Clinical outcomes and echocardiographic data [LVEF and left ventricular end-systolic volume (LVESV)], and complications were all recorded. In addition, clinical and echocardiographic (≥5% improvement in LVEF or ≥15% decrease in LVESV) responses were assessed. The patients were classified into a complete left bundle branch block (CLBBB) morphology group and a non-CLBBB morphology group according to the baseline QRS configuration.ResultsSeventy patients (66 ± 8.84 years; 55.7% male) with a mean LVEF of 23.2 ± 3.23%, LVEDd of 67.33 ± 7.47 mm and LVESV of 212.08 ± 39.74 ml were included. QRS configuration at baseline was CLBBB in 67.1% (47/70) of patients and non-CLBBB in 32.9%. At implantation, the CSP threshold was 0.6 ± 0.3 V @ 0.4 ms and remained stable during a mean follow-up of 23.43 ± 11.44 months. CSP resulted in significant LVEF improvement from 23.2 ± 3.23% to 34.93 ± 10.34% (P < 0.001) and significant QRS narrowing from 154.99 ± 34.42 to 130.81 ± 25.18 ms (P < 0.001). Clinical and echocardiographic responses were observed in 91.4% (64/70) and 77.1% (54/70) of patients. Super-response to CSP (≥15% improvement in LVEF or ≥30% decrease in LVESV) was observed in 52.9% (37/70) of patients. One patient died due to acute HF and following severe metabolic disorders. Baseline BNP (odds ratio: 0.969; 95% confidence interval: 0.939–0.989; P = 0.045) was associated with echocardiographic response. The proportions of clinical and echocardiographic responses in the CLBBB group were higher than those in the non-CLBBB group but without significant statistical differences.ConclusionsCSP is feasible and safe in patients with HFsrEF. CSP is associated with a significant improvement in clinical and echocardiographic outcomes, even for patients with non-CLBBB widened QRS

    Experimental Study on Magnetic Coupling Piezoelectric–Electromagnetic Composite Galloping Energy Harvester

    No full text
    In order to solve the demand for low-power microcomputers and micro-electro-mechanical system components for continuous energy supply, a magnetic coupling piezoelectric–electromagnetic composite galloping energy harvester (MPEGEH) is proposed. It is composed of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EEH) coupled by magnetic force. The bistable nonlinear magnetic coupling structure improves the output power of the MPEGEH. The advantages and output performance of the MPEGEH are analyzed. The prototype of the energy harvester is made, and the nonlinear output characteristics under different load resistances are analyzed. Through the experiment on the key parameters of the composite energy harvester, it is found that the higher the coupling degree of the two parts of the MPEGEH, the stronger the nonlinear characteristics and the better the output characteristics. The results show that the onset wind velocity and output power of the MPEGEH are better than the classic galloping piezoelectric energy harvester (CGPEH). At the same wind speed, with the increase in the distance d0 between magnets A and B, the output power of both the PEH and the EEH decreases. When d0 is 37 mm, the output power of the EEH is the largest. The distance s0 between magnets B and C has little influence on the output power of the PEH but has a great influence on the EEH. When s0 is 23 mm, the EEH has the best output characteristics. Compared with the CGPEH, the onset wind velocity is reduced by 28%, and the output power is increased by 136% when the wind speed is 11 m/s

    Experimental Research of Symmetrical Airfoil Piezoelectric Energy Harvester Excited by Vortex-Induced Flutter Coupling

    No full text
    In order to solve the problem of self-energy supply of vehicle-mounted micro-sensors, bridge detection and some other low-power electronic devices in their working state, a vortex-induced flutter composite nonlinear piezoelectric energy harvester (VFPEH) with symmetrical airfoils on both sides of a cylindrical bluff body is designed. The VFPEH consists of a cantilever beam, a cylindrical bluff body connected to the free end of the cantilever beam, and two airfoil components symmetrically fixed at both ends of the shaft, which enables coupling between vortex-induced vibration and flutter. The airfoil symmetrically arranged on both sides of the cylindrical bluff body induces the cantilever beam to produce bending and torsional composite vibrations at high wind velocities, realizing energy harvest in the two degrees of freedom motion direction, which can effectively improve the output power of the energy harvester. Based on a wind tunnel experimental platform, the effect of key parameters matching impedance and the diameter of the cylindrical bluff body on the output performance of the VFPEH is investigated, together with the output performance of the classical vortex-induced energy harvester (VEH), the flutter energy harvester (FEH) and the VFPEH. The experimental results show that for the VFPEH under a combination of vortex-induced vibrations and flutter vibrations has a better output performance than the VEH and the FEH when using the same size. The coupling of vortex-induced vibration and flutter can reduce the start-up wind velocity of the VFPEH and expand the wind velocity range of the high output power of the VFPEH. The VFPEH has a better output performance at the cylindrical bluff body diameter of 30 mm and a load resistance of 140 kΩ. When the wind velocity range is 2 m/s–15 m/s, the maximum output power of the VFPEH is 6.47 mW, which is 129.4 times and 24.9 times of the maximum output power of the VEH (0.05 mW) and FEH (0.26 mW), respectively

    Experimental Research of Symmetrical Airfoil Piezoelectric Energy Harvester Excited by Vortex-Induced Flutter Coupling

    No full text
    In order to solve the problem of self-energy supply of vehicle-mounted micro-sensors, bridge detection and some other low-power electronic devices in their working state, a vortex-induced flutter composite nonlinear piezoelectric energy harvester (VFPEH) with symmetrical airfoils on both sides of a cylindrical bluff body is designed. The VFPEH consists of a cantilever beam, a cylindrical bluff body connected to the free end of the cantilever beam, and two airfoil components symmetrically fixed at both ends of the shaft, which enables coupling between vortex-induced vibration and flutter. The airfoil symmetrically arranged on both sides of the cylindrical bluff body induces the cantilever beam to produce bending and torsional composite vibrations at high wind velocities, realizing energy harvest in the two degrees of freedom motion direction, which can effectively improve the output power of the energy harvester. Based on a wind tunnel experimental platform, the effect of key parameters matching impedance and the diameter of the cylindrical bluff body on the output performance of the VFPEH is investigated, together with the output performance of the classical vortex-induced energy harvester (VEH), the flutter energy harvester (FEH) and the VFPEH. The experimental results show that for the VFPEH under a combination of vortex-induced vibrations and flutter vibrations has a better output performance than the VEH and the FEH when using the same size. The coupling of vortex-induced vibration and flutter can reduce the start-up wind velocity of the VFPEH and expand the wind velocity range of the high output power of the VFPEH. The VFPEH has a better output performance at the cylindrical bluff body diameter of 30 mm and a load resistance of 140 kΩ. When the wind velocity range is 2 m/s–15 m/s, the maximum output power of the VFPEH is 6.47 mW, which is 129.4 times and 24.9 times of the maximum output power of the VEH (0.05 mW) and FEH (0.26 mW), respectively

    Green construction technology of Sanming section of Puyan Expressway in Sanming

    No full text
    Based on the demonstration application and integrated innovation of green highway construction in Sanming section of Puyan expressway, this paper comprehensively implements the new concept, new technology and new system of green highway construction, promotes the transformation and application of scientific and technological achievements of green highway, and improves the management level of highway construction

    A Case Report of a Wenckebach Phenomenon Occurring during a His-Bundle Pacing Procedure: Is It Atrioventricular Node Pacing?

    No full text
    A 70-year-old man with severe valvular cardiomyopathy, permanent atrial fibrillation (AF) with a slow ventricular response, and transient atrioventricular (AV) block, was admitted to our center for severe heart failure and recurrent presyncope. While hospitalized, the coronary computed tomography angiography (CTA) showed huge atriums. We tried His bundle pacing (HBP). HB potential was observed at site A, and the His-ventricular (HV) interval was 68 ms. The duration from the stimulus signal to the onset of paced QRS (S-QRSonset) at site A was 232 ms when pacing at 60 beats per minute (BPM) with the pacing threshold of 2.0 V/0.5 ms. The S-QRSonset was longer than the HV interval and had a notable and progressive prolongation from 252 ms to 456 ms during the pacing at 90 BPM. Then, we pushed another lead a little forward, and the S-QRSonset shortened back to 68 ms, and the paced QRS morphology was the same as the intrinsic QRS morphology with the pacing threshold of 1.5 V/0.5 ms. The progressively prolonged S-QRSonset demonstrated a Wenckebach phenomenon (WP), a well-known electrophysiological characteristic of the AV node (AVN). It is the first time to report an intraoperative AVN-pacing related-WP in a patient with persistent AF. The enlarged atrium might be convenient for capturing the AVN. There are some other potential explanations for this phenomenon. The diameters of atriums decreased significantly, and the symptoms improved after the procedure. This is the first reported case in which we might achieve AVN capture in a patient with persistent AF. Although we ultimately chose HBP for better long-term pacing thresholds, the result of this case suggested that AVN pacing may be possible
    corecore