33 research outputs found
Diacylglycerol oil for the metabolic syndrome
Excess adiposity has been shown to play a crucial role in the development of the metabolic syndrome. The elevated fasting and postprandial triglyceride-rich lipoprotein levels is the central lipid abnormality observed in the metabolic syndrome. Recent studies have indicated that diacylglycerol (DAG) is effective for fasting and postprandial hyperlipidemia and preventing excess adiposity by increasing postprandial energy expenditure. We will here discuss the mechanisms of DAG-mediated improvements in hyperlipidemia and in postprandial energy expenditure, and effects of DAG oil on lipid/glucose metabolism and on body fat. Further, the therapeutic application of DAG for the metabolic syndrome will be considered
Metal-organic Frameworks as Near-Infrared Emitting Materials Based on Lanthanide Cations: from Fundamental Science to Biological Imaging
International audienc
Breath sulfides and pulmonary function in cystic fibrosis
We have determined the concentrations of carbonyl sulfide (OCS), dimethylsulfide, and carbon disulfide (CS(2)) in the breath of a group of cystic fibrosis (CF) patients and one of healthy controls. At the detection sensitivity in these experiments, room air always contained measurable quantities of these three gases. For each subject the inhaled room concentrations were subtracted from the time-coincident concentrations in exhaled breath air. The most significant differences between the CF and control cohorts in these breath-minus-room values were found for OCS. The control group demonstrated a net uptake of 250 ± 20 parts-per-trillion-by-volume (pptv), whereas the CF cohort had a net uptake of 110 ± 60 pptv (P = 0.00003). Three CF patients exhaled more OCS than they inhaled from the room. The OCS concentrations in the CF cohort were strongly correlated with pulmonary function. The dimethylsulfide concentrations in breath were greatly enhanced over ambient, but no significant difference was observed between the CF and healthy control groups. The net (breath minus room) CS(2) concentrations for individuals ranged between +180 and -100 pptv. They were slightly greater in the CF cohort (+26 ± 38 pptv) vs. the control group (-17 ± 15 pptv; P = 0.04). Lung disease in CF is accompanied by the subsistence of chronic bacterial infections. Sulfides are known to be produced by bacteria in various systems and were therefore the special target for this investigation. Our results suggest that breath sulfide content deserves attention as a noninvasive marker of respiratory colonization