177 research outputs found

    Higgs pair production with SUSY QCD correction: revisited under current experimental constraints

    Get PDF
    We consider the current experimental constraints on the parameter space of the MSSM and NMSSM. Then in the allowed parameter space we examine the Higgs pair production at the 14 TeV LHC via bbˉ→hhb\bar{b}\to hh (hh is the 125 GeV SM-like Higg boson) with one-loop SUSY QCD correction and compare it with the production via gg→hhgg\to hh. We obtain the following observations: (i) For the MSSM the production rate of bbˉ→hhb\bar{b} \to hh can reach 50 fb and thus can be competitive with gg→hhgg \to hh, while for the NMSSM bbˉ→hhb\bar{b} \to hh has a much smaller rate than gg→hhgg \to hh due to the suppression of the hbbˉhb\bar{b} coupling; (ii) The SUSY-QCD correction to bbˉ→hhb\bar{b} \to hh is sizable, which can reach 45%45\% for the MSSM and 15%15\% for the NMSSM within the 1σ1\sigma region of the Higgs data; (iii) In the heavy SUSY limit (all soft mass parameters become heavy), the SUSY effects decouple rather slowly from the Higgs pair production (especially the gg→hhgg\to hh process), which, for MSUSY=5M_{\rm SUSY}=5 TeV and mA<1m_A<1 TeV, can enhance the production rate by a factor of 1.5 and 1.3 for the MSSM and NMSSM, respectively. So, the Higgs pair production may be helpful for unraveling the effects of heavy SUSY.Comment: discussions and references added, accepted by JHE

    A light Higgs scalar in the NMSSM confronted with the latest LHC Higgs data

    Full text link
    In the Next-to-Minimal Supersymemtric Standard Model (NMSSM), one of the neutral Higgs scalars (CP-even or CP-odd) may be lighter than half of the SM-like Higgs boson. In this case, the SM-like Higgs boson h can decay into such a light scalar pair and consequently the diphoton and ZZ signal rates at the LHC will be suppressed. In this work, we examine the constraints of the latest LHC Higgs data on such a possibility. We perform a comprehensive scan over the parameter space of the NMSSM by considering various experimental constraints and find that the LHC Higgs data can readily constrain the parameter space and the properties of the light scalar, e.g., at 3 σ\sigma level this light scalar should be highly singlet dominant and the branching ratio of the SM-like Higgs boson decay into the scalar pair should be less than about 30%. Also we investigate the detection of this scalar at various colliders. Through a detailed Monte Carlo simulation we find that under the constraints of the current Higgs data this light scalar can be accessible at the LHC-14 with an integrated luminosity over 300 fb−1^{-1}.Comment: Accepted by JHE

    A scalar potential from gauge condensation and its implications

    Full text link
    We consider a scalar field ϕ\phi whose coupling to the kinetic term of a non-abelian gauge field is set at an UV scale MM. Then the confinement of the gauge sector will induce a ϕ\phi-dependent vacuum energy which generates a dimensionful potential for the scalar. It provides a good example of dynamical generation of a new physics scale below MM through the vacuum expectation value ⟨ϕ⟩\langle \phi \rangle. This mechanism may shed light on the origin of dark matter, or spontaneous symmetry breaking applicable to the electroweak symmetry.Comment: 4 pages, 3 figure

    A light SUSY dark matter after CDMS-II, LUX and LHC Higgs data

    Get PDF
    In SUSY, a light dark matter is usually accompanied by light scalars to achieve the correct relic density, which opens new decay channels of the SM like Higgs boson. Under current experimental constraints including the latest LHC Higgs data and the dark matter relic density, we examine the status of a light neutralino dark matter in the framework of NMSSM and confront it with the direct detection results of CoGeNT, CDMS-II and LUX. We have the following observations: (i) A dark matter as light as 8 GeV is still allowed and its scattering cross section off the nucleon can be large enough to explain the CoGeNT/CDMS-II favored region; (ii) The LUX data can exclude a sizable part of the allowed parameter space, but still leaves a light dark matter viable; (iii) The SM-like Higgs boson can decay into the light dark matter pair with an invisible branching ratio reaching 30% under the current LHC Higgs data, which may be tested at the 14 TeV LHC experiment.Comment: 18 pages, 4 figure

    Two-Higgs-doublet model with a color-triplet scalar: a joint explanation for top quark forward-backward asymmetry and Higgs decay to diphoton

    Full text link
    The excess of top quark forward-backward asymmetry (AFBtA^t_{FB}) reported by the Tevatron and the enhancement of the Higgs decay to diphoton observed by the LHC may point to a same origin of new physics. In this note we examined such anomalies in the two-Higgs-doublet model with a color-triplet scalar. We found that under current experimental constraints this model can simultaneously explain both anomalies at 1σ1\sigma level. Also, we examined the Higgs decay h→Zγh\to Z\gamma and displayed its correlation with h→γγh\to \gamma\gamma. We found that unlike other models, this model predicts a special correlation between h→Zγh\to Z\gamma and h→γγh\to \gamma\gamma, i.e., the ZγZ\gamma rate is highly suppressed while the γγ\gamma\gamma rate is enhanced. This behavior may help to distinguish this model in the future high luminosity run of the LHC.Comment: 18pages, 4figures, references adde

    A minimal U(1)′U(1)^\prime extension of MSSM in light of the B decay anomaly

    Full text link
    Motivated by the RKR_K and RK∗R_{K^*} anomalies from B decays, we extend the minimal supersymmetric model with a non-universal anomaly-free U(1)′U(1)^\prime gauge symmetry, coupling non-universally to the lepton sector as well as the quark sector. In particular, only the third generation quarks are charged under this U(1)′U(1)^\prime, which can easily evade the dilepton bound from the LHC searches. An extra singlet is introduced to break this U(1)′U(1)^\prime symmetry allowing for the μ\mu-term to be generated dynamically. The relevant constraints of Bs−BˉsB_s-\bar{B}_s mixing, D0−Dˉ0D^0-\bar{D}^0 mixing and the LHC dilepton searches are considered. We find that in the allowed parameter space this U(1)′U(1)^\prime gauge interaction can accommodate the RKR_K and RK∗R_{K^*} anomalies and weaken considerably the Z′Z^\prime mass limits while remaining perturbative up to the Planck scale.Comment: 12 pages,2 figure

    Vacuum stability in stau-neutralino coannihilation in MSSM

    Full text link
    The stau-neutralino coannihilation provides a feasible way to accommodate the observed cosmological dark matter (DM) relic density in the minimal supersymmetric standard model (MSSM). In such a coannihilation mechanism the stau mass usually has an upper bound since its annihilation rate becomes small with the increase of DM mass. Inspired by this observation, we examine the upper limit of stau mass in the parameter space with a large mixing of staus. We find that the stau pair may dominantly annihilate into dibosons and hence the upper bound on the stau mass (∼400\sim400 GeV) obtained from the ffˉf\bar{f} final states can be relaxed. Imposing the DM relic density constraint and requiring a long lifetime of the present vacuum, we find that the lighter stau mass can be as heavy as about 1.4 TeV for the stau maximum mixing. However, if requiring the present vacuum to survive during the thermal history of the universe, this mass limit will reduce to about 0.9 TeV. We also discuss the complementarity of vacuum stability and direct detections in probing this stau coannihilation scenario.Comment: 12 pages, 6 figure
    • …
    corecore