258 research outputs found
Higgs pair production with SUSY QCD correction: revisited under current experimental constraints
We consider the current experimental constraints on the parameter space of
the MSSM and NMSSM. Then in the allowed parameter space we examine the Higgs
pair production at the 14 TeV LHC via ( is the 125 GeV
SM-like Higg boson) with one-loop SUSY QCD correction and compare it with the
production via . We obtain the following observations: (i) For the
MSSM the production rate of can reach 50 fb and thus can be
competitive with , while for the NMSSM has a much
smaller rate than due to the suppression of the
coupling; (ii) The SUSY-QCD correction to is sizable, which
can reach for the MSSM and for the NMSSM within the
region of the Higgs data; (iii) In the heavy SUSY limit (all soft mass
parameters become heavy), the SUSY effects decouple rather slowly from the
Higgs pair production (especially the process), which, for TeV and TeV, can enhance the production rate by a factor of
1.5 and 1.3 for the MSSM and NMSSM, respectively. So, the Higgs pair production
may be helpful for unraveling the effects of heavy SUSY.Comment: discussions and references added, accepted by JHE
Echinoderms have bilateral tendencies
Echinoderms take many forms of symmetry. Pentameral symmetry is the major
form and the other forms are derived from it. However, the ancestors of
echinoderms, which originated from Cambrian period, were believed to be
bilaterians. Echinoderm larvae are bilateral during their early development.
During embryonic development of starfish and sea urchins, the position and the
developmental sequence of each arm are fixed, implying an auxological
anterior/posterior axis. Starfish also possess the Hox gene cluster, which
controls symmetrical development. Overall, echinoderms are thought to have a
bilateral developmental mechanism and process. In this article, we focused on
adult starfish behaviors to corroborate its bilateral tendency. We weighed
their central disk and each arm to measure the position of the center of
gravity. We then studied their turning-over behavior, crawling behavior and
fleeing behavior statistically to obtain the center of frequency of each
behavior. By joining the center of gravity and each center of frequency, we
obtained three behavioral symmetric planes. These behavioral bilateral
tendencies might be related to the A/P axis during the embryonic development of
the starfish. It is very likely that the adult starfish is, to some extent,
bilaterian because it displays some bilateral propensity and has a definite
behavioral symmetric plane. The remainder of bilateral symmetry may have
benefited echinoderms during their evolution from the Cambrian period to the
present
Ferromagnetic and insulating behavior in both half magnetic levitation and non-levitation LK-99 like samples
Finding materials exhibiting superconductivity at room temperature has long
been one of the ultimate goals in physics and material science. Recently,
room-temperature superconducting properties have been claimed in a copper
substituted lead phosphate apatite (PbCu(PO)O, or called
LK-99) [1-3]. Using a similar approach, we have prepared LK-99 like samples and
confirmed the half-levitation behaviors in some small specimens under the
influence of a magnet at room temperature. To examine the magnetic properties
of our samples, we have performed systematic magnetization measurements on the
as-grown LK-99-like samples, including the half-levitated and non-levitated
samples. The magnetization measurements show the coexistence of
soft-ferromagnetic and diamagnetic signals in both half-levitated and
non-levitated samples. The electrical transport measurements on the as-grown
LK-99-like samples including both half-levitated and non-levitated samples show
an insulating behavior characterized by the increasing resistivity with the
decreasing temperature
Rotational Symmetry Breaking in Superconducting Nickelate Nd0.8Sr0.2NiO2 Films
The infinite-layer nickelates, isostructural to the high-Tc cuprate superconductors, have emerged as a promising platform to host unconventional superconductivity and stimulated growing interest in the condensed matter community. Despite considerable attention, the superconducting pairing symmetry of the nickelate superconductors, the fundamental characteristic of a superconducting state, is still under debate. Moreover, the strong electronic correlation in the nickelates may give rise to a rich phase diagram, where the underlying interplay between the superconductivity and other emerging quantum states with broken symmetry is awaiting exploration. Here, we study the angular dependence of the transport properties of the infinite-layer nickelate Nd0.8Sr0.2NiO2 superconducting films with Corbino-disk configuration. The azimuthal angular dependence of the magnetoresistance (R(φ)) manifests the rotational symmetry breaking from isotropy to four-fold (C4) anisotropy with increasing magnetic field, revealing a symmetry-breaking phase transition. Approaching the low-temperature and large-magnetic-field regime, an additional two-fold (C2) symmetric component in the R(φ) curves and an anomalous upturn of the temperature-dependent critical field are observed simultaneously, suggesting the emergence of an exotic electronic phase. Our work uncovers the evolution of the quantum states with different rotational symmetries in nickelate superconductors and provides deep insight into their global phase diagram
Numerical study of premixed PODE3-4/CH4 flames at engine-relevant conditions
Polyoxymethylene dimethyl ether (PODEn, n ≥ 1) is a promising alternative fuel to diesel with higher reactivity and low soot formation tendency. In this study, PODE3-4 is used as a pilot ignition fuel for methane (CH4) and the combustion characteristics of PODE3-4/CH4 mixtures are investigated numerically using an updated PODE3-4 mechanism. The ignition delay time (IDT) and laminar burning velocity (LBV) of PODE3-4/CH4 blends were calculated at high temperature and high pressure relevant to engine conditions. It is discovered that addition of a small amount of PODE3-4 has a dramatic promotive effect on IDT and LBV of CH4, whereas such a promoting effect decays at higher PODE3-4 addition. Kinetic analysis was performed to gain more insight into the reaction process of PODE3-4/CH4 mixtures at different conditions. In general, the promoting effect originates from the high reactivity of PODE3-4 at low temperatures and it is further confirmed in simulations using a perfectly stirred reactor (PSR) model. The addition of PODE3-4 significantly extends the extinction limit of CH4 from a residence time of ~0.5 ms to that of ~0.08 ms, indicating that the flame stability is enhanced as well by PODE3-4 addition. It is also found that NO formation is reduced in lean or rich flames; moreover, NO formation is inhibited by too short a residence time
Discharging behavior of a fixed-bed thermochemical reactor under different charging conditions: modelling and experimental validation
Thermochemical heat storage has attracted significant attention in recent years due to potential advantages associated with very high-energy density at the material scale and its suitability for long-duration energy storage because of almost zero loss during storage. Despite the potential, thermochemical heat storage technologies are still in the early stage of development and little has been reported on thermochemical reactors. In this paper, our recent work on the charging and discharging behavior of a fixed-bed thermochemical reactor is reported. Silica gels were used as the sorbent for the experimental work. An effective model was established to numerically study the effect of different charging conditions on the discharging behavior of the reactor, which was found to have a maximum deviation of 10.08% in terms of the root mean square error compared with the experimental results. The experimentally validated modelling also showed that the discharging temperature lift increased by 5.84 times by changing the flow direction of the air in the discharging process when the charging level was at 20%. At a charging termination temperature of 51.25 °C, the maximum discharging temperature was increased by 2.35 °C by reducing the charging flow velocity from 0.64 m/s to 0.21 m/s. An increase in the charging temperature and a decrease in the air humidity increased the maximum discharging outlet temperature lift by 3.37 and 1.89 times, respectively
Discharging Behavior of a Fixed-Bed Thermochemical Reactor under Different Charging Conditions:Modelling and Experimental Validation
Thermochemical heat storage has attracted significant attention in recent years due to potential advantages associated with very high-energy density at the material scale and its suitability for long-duration energy storage because of almost zero loss during storage. Despite the potential, thermochemical heat storage technologies are still in the early stage of development and little has been reported on thermochemical reactors. In this paper, our recent work on the charging and discharging behavior of a fixed-bed thermochemical reactor is reported. Silica gels were used as the sorbent for the experimental work. An effective model was established to numerically study the effect of different charging conditions on the discharging behavior of the reactor, which was found to have a maximum deviation of 10.08% in terms of the root mean square error compared with the experimental results. The experimentally validated modelling also showed that the discharging temperature lift increased by 5.84 times by changing the flow direction of the air in the discharging process when the charging level was at 20%. At a charging termination temperature of 51.25 °C, the maximum discharging temperature was increased by 2.35 °C by reducing the charging flow velocity from 0.64 m/s to 0.21 m/s. An increase in the charging temperature and a decrease in the air humidity increased the maximum discharging outlet temperature lift by 3.37 and 1.89 times, respectively.</p
Distinctive prognostic value and cellular functions of osteopontin splice variants in human gastric cancer
Background: Osteopontin (OPN) splice variants are identified as predictors of tumour progression and therapeutic resistance in certain types of solid tumours. However, their roles in gastric cancer (GC) remain poorly characterized. The current study sought to assess the prognostic value of the three OPN splice variants (namely OPN-a, OPN-b, and OPN-c) in gastric cancer and their potential functions within gastric cancer cells. Methods: RNA extraction and reverse transcription were performed using our clinical cohort of gastric carcinomas and matched normal tissues (n = 324 matched pairs). Transcript levels were determined using real-time quantitative PCR. Three OPN splice variants overexpressed cell lines were created from the gastric cancer cell line HGC-27. Subsequently, biological functions, including cell growth, adhesion, migration, and invasion, were studied. The potential effects of OPN isoforms on cisplatin and 5-Fu were evaluated by detecting cellular reactive oxygen species (ROS) levels in the HGC-27-derived cell lines. Results: Compared with normal tissues, the expression levels of three splice variants were all elevated in gastric cancer tissues in an order of OPN-a > OPN-b > OPN-c. The OPN-a level significantly increased with increasing TNM staging and worse clinical outcome. There appeared to be a downregulation for OPN-c in increasing lymph node status (p < 0.05), increasing TNM staging, and poor differentiation. High levels of OPN-a and OPN-b were correlated with short overall survival and disease-free survival of gastric cancer patients. However, the low expression of OPN-c was significantly associated with a poor prognosis. Functional analyses further showed that ectopic expression of OPN-c suppressed in vitro proliferation, adhesiveness, migration, and invasion properties of HGC-27 cells, while the opposite role was seen for OPN-a. Cellular ROS detection indicated that OPN-a and OPN-c significantly promoted ROS production after treatment with 5-Fu comparing to OPN-vector, while only OPN-a markedly induced ROS production after treatment with cisplatin. Conclusion: Our results suggest that OPN splice variants have distinguished potential to predict the prognosis of gastric cancer. Three OPN variants exert distinctive functions in gastric cancer cells. Focusing on specific OPN isoforms could be a novel direction for developing diagnostic and therapeutic approaches in gastric cancer
- …
