96 research outputs found

    Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166260/1/gtd2bf00020.pd

    Text Mining to Facilitate Domain Knowledge Discovery

    Get PDF

    Distributed charging management of multi‐class electric vehicles with different charging priorities

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166242/1/gtd2bf02710.pd

    E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle

    Get PDF
    Electric vehicles (EVs) are a promising solution to reduce the transportation dependency on oil, as well as the environmental concerns. Realization of E-transportation relies on providing electrical energy to the EVs in an effective way. Energy storage system (ESS) technologies, including batteries and ultra-capacitors, have been significantly improved in terms of stored energy and power. Beside technology advancements, a battery management system is necessary to enhance safety, reliability and efficiency of the battery. Moreover, charging infrastructure is crucial to transfer electrical energy from the grid to the EV in an effective and reliable way. Every aspect of E-transportation is permeated by the presence of an intelligent hardware platform, which is embedded in the vehicle components, provided with the proper interfaces to address the communication, control and sensing needs. This embedded system controls the power electronics devices, negotiates with the partners in multi-agent scenarios, and performs fundamental tasks such as power flow control and battery management. The aim of this paper is to give an overview of the open challenges in E-transportation and to show the fundamental role played by embedded systems. The conclusion is that transportation electrification cannot fully be realized without the inclusion of the recent advancements in embedded systems

    Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

    Get PDF
    Simple, efficient, and durable electrodes are highly demanded for practical electrochemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR-Ni foam) was facilely prepared via one-step cyclic voltammetry electrodeposition of graphene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuranzone (NFZ, a kind of typical antibiotics) was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl), the removal efficiency of NFZ (C0 = 20 mg L−1) at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1) than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2), unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics

    Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

    Get PDF
    Simple, efficient, and durable electrodes are highly demanded for practical electro­chemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR‑Ni foam) was facilely prepared via one-step cyclic voltammetry electrodeposition of gra­phene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuran­zone (NFZ, a kind of typical antibiotics) was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl), the removal efficiency of NFZ (C0 = 20 mg L−1) at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1) than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2), unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics

    A Cross-Disciplinary Outlook of Directions and Challenges in Industrial Electronics

    Get PDF
    [EN] How to build a sustainable society in view of industrial electronics has been discussed from energy, information and communication technologies, cyber-physical systems (CPSs), and other viewpoints. This paper presents a cross-disciplinary view that integrates the fields of human factors, professional education, electronic systems on chip, resilience and security for industrial applications, technology ethics and society, and standards. After explaining the efforts and challenges in these fields, this paper shows a methodology for cross-disciplinary technology that integrates the technical committees in Cluster 4, Industrial Electronics Society. A project, which was launched in March 2022, implements a 'Proof of Concept' trial of the methodology.The work of Jinhua Sh was supported by JSPS Grant-in-Aid for Scientific Research B under Grant 22H03998 (Japan).She, J.; Guzman-Miranda, H.; Huang, V.; Chen, AC.; Karnouskos, S.; Dunai, L.; Ma, C.... (2022). A Cross-Disciplinary Outlook of Directions and Challenges in Industrial Electronics. IEEE Journal of Emerging and Selected Topics in Industrial Electronics (Online). 3:375-391. https://doi.org/10.1109/OJIES.2022.3174218375391

    Large scale stochastic inventory routing problems with split delivery and service level constraints

    Get PDF
    A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer’s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC
    corecore