89 research outputs found

    Optimal Beamforming for Hybrid Satellite Terrestrial Networks with Nonlinear PA and Imperfect CSIT

    Get PDF
    In hybrid satellite-terrestrial networks (HSTNs), spectrum sharing is crucial to alleviate the "spectrum scarcity" problem. Therein, the transmit beams should be carefully designed to mitigate the inter-satellite-terrestrial interference. Different from previous studies, this work considers the impact of both nonlinear power amplifier (PA) and large-scale channel state information at the transmitter (CSIT) on beamforming. These phenomena are usually inevitable in a practical HSTN. Based on the Saleh model of PA nonlinearity and the large-scale multi-beam satellite channel parameters, we formulate a beamforming optimization problem to maximize the achievable rate of the satellite system while ensuring that the inter-satellite-terrestrial interference is below a given threshold. The optimal amplitude and phase of desired beams are derived in a decoupled manner. Simulation results demonstrate the superiority of the proposed beamforming scheme.Comment: 5 pages, 5 figures, journa

    Aerial small cells using coordinated multiple UAVs : an energy efficiency optimization perspective

    Get PDF
    Recently, unmanned aerial vehicle (UAV) communications have attracted great research interest. Due to the limited on-board energy, the optimization of energy efficiency (EE) is critical for UAV communications. In this paper, we propose an EE maximization scheme for UAV swarm-enabled small cell networks using large-scale channel state information at the transmitter (CSIT). The proposed scheme provides an agile coordination strategy for the UAVs in a swarm under energy constraints. We first formulate the EE maximization problem, where the objective function is defined as the ratio of the ergodic total data size to the total energy consumption. After that, an accurate approximation is derived to remove the intractable expectation operator in the objective function. As the newly formulated problem is non-convex, we decompose it into two subproblems to optimize the transmit power and the hovering time in an iterative way. Further by leveraging the max-min and linear optimization tools, both subproblems are efficiently solved. Simulation results demonstrate the superiority of our EE maximization scheme

    Highly Sensitive Electrochemical Sensor for the Determination of 8-Hydroxy-2 \u27-deoxyguanosine Incorporating SWCNTs-Nafion Composite Film

    Get PDF
    8-Hydroxy-2\u27-deoxyguanosine (8-OHdG) is a typical biomarker of oxidative DNA damage and has attracted much attention in recent years since the level of 8-OHdG in body fluids is typically associated with various diseases. In this work, a simple and highly sensitive electrochemical sensor for the determination of 8-OHdG was fabricated incorporating single wall carbon nanotubes-(SWCNTs-) Nafion composite film coated on glassy carbon electrode. Nafion was chosen as an optimal adhesive agent from a series of adhesive agents and acted as a binder, enrichment, and exclusion film. Due to the strong cation-exchange ability of Nafion and the outstanding electronic properties ofSWCNTs, the prepared SWCNTs-Nafion film can strongly enhance the electrochemical response to oxidation of 8-OHdG and efficiently alleviate the interferences from uric acid and ascorbic acid. The oxidation peak currents are linear with the concentration of 8-OHdG in the range of 0.03 to 1.25 mu M with a detection limit of 8.0 nM (S/N = 3). This work demonstrates that SWCNTs-Nafion film can improve the sensitivity, selectivity, reproducibility, and stability, making it an ideal candidate for electrochemical detection of 8-OHdG

    Nova+^+: Generative Language Models for Binaries

    Full text link
    Generative large language models (LLMs) pre-trained on code have shown impressive effectiveness in code generation, program repair, and document analysis. However, existing generative LLMs focus on source code and are not specialized for binaries. There are three main challenges for LLMs to model and learn binary code: hex-decimal values, complex global dependencies, and compiler optimization levels. To bring the benefit of LLMs to the binary domain, we develop Nova and Nova+^+, which are LLMs pre-trained on binary corpora. Nova is pre-trained with the standard language modeling task, showing significantly better capability on five benchmarks for three downstream tasks: binary code similarity detection (BCSD), binary code translation (BCT), and binary code recovery (BCR), over GPT-3.5 and other existing techniques. We build Nova+^+ to further boost Nova using two new pre-training tasks, i.e., optimization generation and optimization level prediction, which are designed to learn binary optimization and align equivalent binaries. Nova+^+ shows overall the best performance for all three downstream tasks on five benchmarks, demonstrating the contributions of the new pre-training tasks

    Ag-Mg antisite defect induced high thermoelectric performance of α-MgAgSb

    Get PDF
    Engineering atomic-scale native point defects has become an attractive strategy to improve the performance of thermoelectric materials. Here, we theoretically predict that Ag-Mg antisite defects as shallow acceptors can be more stable than other intrinsic defects under Mg-poor-Ag/Sb-rich conditions. Under more Mg-rich conditions, Ag vacancy dominates the intrinsic defects. The p-type conduction behavior of experimentally synthesized ¿-MgAgSb mainly comes from Ag vacancies and Ag antisites (Ag on Mg sites), which act as shallow acceptors. Ag-Mg antisite defects significantly increase the thermoelectric performance of ¿-MgAgSb by increasing the number of band valleys near the Fermi level. For Li-doped ¿-MgAgSb, under more Mg-rich conditions, Li will substitute on Ag sites rather than on Mg sites and may achieve high thermoelectric performance. A secondary valence band is revealed in ¿-MgAgSb with 14 conducting carrier pockets

    The impact of general anesthesia on the outcomes of preterm infants with gestational age less than 32 weeks delivered via cesarean section

    Get PDF
    Background:Recent advancements in China’s perinatal and neonatal intensive care have significantly reduced neonatal mortality, yet preterm births before 32 weeks remain the primary cause of neonatal fatalities and contribute to long-term disabilities. The prognosis of very preterm infants (VPIs) is significantly affected by factors including the intrauterine environment, delivery method and neonatal intensive care. Cesarean section which often used for preterm births has implications that are not fully understood, particularly concerning the type of anesthesia used. This study examines the impact of general anesthesia (GA) during cesarean delivery on VPI outcomes, aiming to identify strategies for mitigating GA-associated risks.Methods:This cohort study analyzed 1,029 VPIs born via cesarean section under 32 weeks’ gestation at our single-center from 1 January 2018, to 31 December 2022. Detailed medical records, encompassing perioperative information, maternal data and neonatal outcomes were meticulously examined. The primary aim of this investigation was to compare maternal characteristics and neonatal outcomes between VPIs delivered under GA and neuraxial anesthesia (NA). A significance level of p < 0.05 was established.Results:Of the 1,029 VPIs analyzed, 87.95% (n = 905) were delivered via NA and 12.05% (n = 124) via GA. Mothers with hypertensive pregnancy diseases and emergency operations were more inclined to choose GA. VPIs delivered under GA showed a lower Apgar score at one and 5 minutes (p < 0.01), increased need for tracheal intubation resuscitation (32.2% vs. 12.2%, p < 0.01) and a greater incidence of severe neurological injury (SNI) (14.5% vs. 5%, p < 0.01). Multivariable analysis revealed GA was significantly associated with lower Apgar scores at one (OR 6.321, 95% CI 3.729–10.714; p < 0.01) and 5 minutes (OR 4.535, 95% CI 2.975–6.913; p < 0.01), higher risk of tracheal intubation resuscitation (OR = 3.133, 95% CI = 1.939–5.061; p < 0.01) and SNI (OR = 3.019, 95% CI = 1.615–5.643; p < 0.01). Furthermore, for VPIs delivered under GA, a prolonged interval from skin incision to fetus delivery was associated with a lower 5-min Apgar score (p < 0.01).Conclusion:This study revealed the significant impact of GA on adverse outcomes among VPIs. In cases when GA is required, proactive measures should be instituted for the care of VPIs such as expediting the interval from skin incision to fetal delivery

    Research on deep hole segmented charge cut blasting of rock roadway based on numerical simulation

    Get PDF
    With the increase of the depth of the blast hole, the rock clamping effect at the bottom of the blast hole is enhanced, resulting in low rock breaking efficiency and blast hole utilization. The past continuous charging method can not solve the above problems. On this basis, this paper studies the rock roadway deep hole segmented charging cut blasting technology to improve the cut blasting efficiency. Using the smooth particle hydrodynamics-finite element method (SPH-FEM), a single-hole cut blasting model with different segmented charge structures was established, and the blasting speed of rock particles in the rock, the number of rock blasting and the characteristics of blasting cavity were analyzed in the blasting process under different models. The results show that different charge structures affect the damage range of the rock near the blast hole, and the damage area of the traditional continuous charge structure in the direction of the blast hole is larger than that of the segmented charge structure. In addition, the continuous charge structure makes the energy distribution of the explosive uneven because the explosive is concentrated at the bottom of the blast hole, resulting in poor blasting effect. The segmented charge structure can increase the number of rock fragments and optimize the blasting cavity, and the rock particles accelerate twice in the process of flying. The large or small proportion of the first segment charge obviously causes the unreasonable use of explosive energy and the poor effect of blasting cavity. Under the conditions of blast hole length, rock parameters and explosive performance set in the simulation, when the first stage charge ratio is 0.4, deep-hole rock tunnel excavation and blasting can make full use of explosive energy to achieve better cut blasting effect. The optimal subsection ratio obtained by numerical simulation was applied to the blasting construction of roadway excavation, and the delay initiation of two explosives in the cut hole was realized by using digital electronic detonator. The field test results show that the segmented charging can create good blasting effect and improve the utilization rate of blast holes in deep hole cut blasting

    Evaluate how steaming and sulfur fumigation change the microstructure, physicochemical properties and in vitro digestibility of Gastrodia elata Bl. starch

    Get PDF
    The sulfur dioxide gas (SO2) generated by sulfur burning can improve the appearance quality of food and enhance the storage time. However, excessive sulfur dioxide will pollute the environment and cause deterioration of food quality, and even the high residual levels can increase the risk of cancer. As Gastrodia elata Blume is prone to corruption during processing, sulfur fumigation is often used for preservation. In this study, spectral analysis and Texture Profile Analysis (TPA) were used to investigate the effects of traditional sulfur fumigation processing on the morphology quality, edible quality and structural characteristics of G. elata. The results showed that compared with direct drying, the pH decreased by 0.399 of the sulfur fumigated after steamed treatment G. elata, and the morphology quality, pasting ability and gel edible quality of the starch were significantly improved. In addition, it was suggested that sulfur fumigation after steaming could promote the release of molecular chains from starch granules and thus enhance the cross-linking between molecules, which explained the reason for the improve of starch edible quality. This study can provide technical and theoretical support for improving the quality of starch rich foods, replacing sulfur fumigation and reducing potential environmental hazards

    Cisplatin inhibits the proliferation of Saos-2 osteosarcoma cells via the miR-376c/TGFA pathway

    Get PDF
    The transforming growth factor alpha (TGFA) gene is involved in the proliferation and metastasis of various tumors, but its role in cell sensitivity to cisplatin chemotherapy is unclear. In this study, we investigated the mechanism underlying inhibitory effects of cisplatin on growth and proliferation of osteosarcoma cells. Osteosarcoma and normal skeletal muscle tissues were collected from 26 patients by biopsy. TGFA was silenced or overexpressed in Saos-2 osteosarcoma cells by transfection with TGFA-shRNA or TGFA ORF clone, respectively. MiR-376c was inhibited or overexpressed by transfection of Saos-2 cells with miR-376c sponge or miR-376c mimics, respectively. Cell growth was analyzed by MTT assay and cell proliferation by BrdU assay. MiR-376c and TGFA mRNA expression was detected by quantitative reverse transcription PCR and TGFA protein expression by Western blot. The target relationship between miR-376c and TGFA was assessed by luciferase reporter assay. Both in osteosarcoma tissues and Saos-2 cells, miR-376c expression was significantly decreased and TGFA mRNA expression was significantly increased compared with control. Transfection of Saos-2 cells with TGFA-shRNA silenced TGFA expression and significantly inhibited cell growth and proliferation. TGFA mRNA and protein expression in Saos-2 cells significantly decreased with increasing cisplatin concentrations (2.5–10 mg/L). Transfection with TGFA ORF clone reversed the inhibitory effects of cisplatin on Saos-2 cell proliferation. Compared with cisplatin (10 mg/L) treatment alone, the combined treatment with cisplatin and miR-376c mimics inhibited the proliferation of Saos-2 cells more significantly. MiR-376c suppressed TGFA expression by directly interacting with its 3' UTR region. Overall, cisplatin inhibited the proliferation of Saos-2 cells by upregulating miR-376c and downregulating TGFA expression
    • …
    corecore