29,752 research outputs found

    Weakly Supervised Domain-Specific Color Naming Based on Attention

    Full text link
    The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.Comment: Accepted at ICPR201

    Long-Run Purchasing Power Parity with Asymmetric Adjustment: Evidence from Mainland China and Taiwan

    Get PDF
    This study applies threshold cointegration test advanced by Enders and Siklos (2001) to investigate the properties of asymmetric adjustment in long-run purchasing power parity (PPP) for both Mainland China and Taiwan during the January 1986 to October 2009 period. Although there is evidence of long-run PPP for both Mainland China and Taiwan, the adjustment mechanism is asymmetric. These results have important policy implications for both Mainland China and Taiwan under study.threshold cointegration test; Purchasing Power Parity; asymmetric adjustment; Mainland China; Taiwan

    An Empirical Note on Testing the Cointegration Relationship Between the Real Estate and Stock Markets in Taiwan

    Get PDF
    This note studies the long-run relationship between real estate and stock markets in the Taiwan context over the 1986Q3 to 2006Q4 period, using standard cointegration test of Johansen and Juselius (1990) and that of Engle-Granger (1987) as well as the fractional cointegration test of Geweke and Porter-Hudak (1983). The results from both types of cointegration tests strongly indicate that these two markets are not cointegrated with each other. With respect to risk diversification, it is obvious that investors and financial institutions should have included both assets in the same portfolio during that period.

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    Random-Singlet Phase in Disordered Two-Dimensional Quantum Magnets

    Full text link
    We study effects of disorder (randomness) in a 2D square-lattice S=1/2S=1/2 quantum spin system, the JJ-QQ model with a 6-spin interaction QQ supplementing the Heisenberg exchange JJ. In the absence of disorder the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS) ground states. The VBS breaks Z4Z_4 symmetry, and in the presence of arbitrarily weak disorder it forms domains. Using QMC simulations, we demonstrate two kinds of such disordered VBS states. Upon dilution, a removed site leaves a localized spin in the opposite sublattice. These spins form AFM order. For random interactions, we find a different state, with no order but algebraically decaying mean correlations. We identify localized spinons at the nexus of domain walls between different VBS patterns. These spinons form correlated groups with the same number of spinons and antispinons. Within such a group, there is a strong tendency to singlet formation, because of spinon-spinon interactions mediated by the domain walls. Thus, no long-range AFM order forms. We propose that this state is a 2D analog of the well-known 1D random singlet (RS) state, though the dynamic exponent zz in 2D is finite. By studying the T-dependent magnetic susceptibility, we find that zz varies, from z=2z=2 at the AFM--RS phase boundary and larger in the RS phase The RS state discovered here in a system without geometric frustration should correspond to the same fixed point as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign problems opens up opportunities for further detailed characterization of its static and dynamic properties. We also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-exchange quantum magnets Sr2_2CuTe1−x_{1-x}Wx_xO6_6.Comment: 31 pages, 29 figures; substantial additions in v2; additional analysis in v

    Random-singlet phase in disordered two-dimensional quantum magnets

    Full text link
    We study effects of disorder (randomness) in a 2D square-lattice S=1/2 quantum spin system, the J-Q model with a 6-spin interaction Q supplementing the Heisenberg exchange J. In the absence of disorder the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS) ground states. The VBS breaks Z4 symmetry, and in the presence of arbitrarily weak disorder it forms domains. Using QMC simulations, we demonstrate two kinds of such disordered VBS states. Upon dilution, a removed site leaves a localized spin in the opposite sublattice. These spins form AFM order. For random interactions, we find a different state, with no order but algebraically decaying mean correlations. We identify localized spinons at the nexus of domain walls between different VBS patterns. These spinons form correlated groups with the same number of spinons and antispinons. Within such a group, there is a strong tendency to singlet formation, because of spinon-spinon interactions mediated by the domain walls. Thus, no long-range AFM order forms. We propose that this state is a 2D analog of the well-known 1D random singlet (RS) state, though the dynamic exponent z in 2D is finite. By studying the T-dependent magnetic susceptibility, we find that z varies, from z=2 at the AFM--RS phase boundary and larger in the RS phase The RS state discovered here in a system without geometric frustration should correspond to the same fixed point as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign problems opens up opportunities for further detailed characterization of its static and dynamic properties. We also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-exchange quantum magnets Sr2CuTe1−xWxO6.Accepted manuscrip
    • 

    corecore