60,892 research outputs found

    Definitions of entanglement entropy of spin systems in the valence-bond basis

    Full text link
    The valence-bond structure of spin-1/2 Heisenberg antiferromagnets is closely related to quantum entanglement. We investigate measures of entanglement entropy based on transition graphs, which characterize state overlaps in the overcomplete valence-bond basis. The transition graphs can be generated using projector Monte Carlo simulations of ground states of specific hamiltonians or using importance-sampling of valence-bond configurations of amplitude-product states. We consider definitions of entanglement entropy based on the bonds or loops shared by two subsystems (bipartite entanglement). Results for the bond-based definition agrees with a previously studied definition using valence-bond wave functions (instead of the transition graphs, which involve two states). For the one dimensional Heisenberg chain, with uniform or random coupling constants, the prefactor of the logarithmic divergence with the size of the smaller subsystem agrees with exact results. For the ground state of the two-dimensional Heisenberg model (and also Neel-ordered amplitude-product states), there is a similar multiplicative violation of the area law. In contrast, the loop-based entropy obeys the area law in two dimensions, while still violating it in one dimension - both behaviors in accord with expectations for proper measures of entanglement entropy.Comment: 9 pages, 8 figures. v2: significantly expande

    Mechanically induced pseudo-magnetic fields in the excitonic fine structures of droplet epitaxial quantum dots

    Full text link
    We present numerical investigations based on the Luttinger-Kohn four-band kpk \cdot p theory and, accordingly, establish a quantitatively valid model of the excitonic fine structures of droplet epitaxial GaAs/AlGaAs quantum dots under uni-axial stress control. In the formalisms, stressing a photo-excited quantum dot is equivalent creating a pseudo-magnetic field that is directly coupled to the pseudo-spin of the exciton doublet and tunable to tailor the polarized fine structure of exciton. The latter feature is associated with the valence-band-mixing of exciton that is especially sensitive to external stress in inherently unstrained droplet epitaxial GaAs/AlGaAs quantum dots and allows us to mechanically design and prepare any desired exciton states of QD photon sources prior to the photon generation.Comment: 7 figure

    Energy-Throughput Tradeoff in Sustainable Cloud-RAN with Energy Harvesting

    Full text link
    In this paper, we investigate joint beamforming for energy-throughput tradeoff in a sustainable cloud radio access network system, where multiple base stations (BSs) powered by independent renewable energy sources will collaboratively transmit wireless information and energy to the data receiver and the energy receiver simultaneously. In order to obtain the optimal joint beamforming design over a finite time horizon, we formulate an optimization problem to maximize the throughput of the data receiver while guaranteeing sufficient RF charged energy of the energy receiver. Although such problem is non-convex, it can be relaxed into a convex form and upper bounded by the optimal value of the relaxed problem. We further prove tightness of the upper bound by showing the optimal solution to the relaxed problem is rank one. Motivated by the optimal solution, an efficient online algorithm is also proposed for practical implementation. Finally, extensive simulations are performed to verify the superiority of the proposed joint beamforming strategy to other beamforming designs.Comment: Accepted by ICC 201

    Nonequilibrium quench dynamics in quantum quasicrystals

    Full text link
    We study the nonequilibrium dynamics of a quasiperiodic quantum Ising chain after a sudden change in the strength of the transverse field at zero temperature. In particular we consider the dynamics of the entanglement entropy and the relaxation of the magnetization. The entanglement entropy increases with time as a power-law, and the magnetization is found to exhibit stretched-exponential relaxation. These behaviors are explained in terms of anomalously diffusing quasiparticles, which are studied in a wave packet approach. The nonequilibrium magnetization is shown to have a dynamical phase transition.Comment: 17 pages, 15 figures; revised version; to appear in New Journal of Physic
    corecore