5,934 research outputs found
High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP
This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs), Graphics Processor Units (GPUs), and IBM’s Cell Broadband Engine (Cell BE), in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools), FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs
Efficiency Resource Allocation for Device-to-Device Underlay Communication Systems: A Reverse Iterative Combinatorial Auction Based Approach
Peer-to-peer communication has been recently considered as a popular issue
for local area services. An innovative resource allocation scheme is proposed
to improve the performance of mobile peer-to-peer, i.e., device-to-device
(D2D), communications as an underlay in the downlink (DL) cellular networks. To
optimize the system sum rate over the resource sharing of both D2D and cellular
modes, we introduce a reverse iterative combinatorial auction as the allocation
mechanism. In the auction, all the spectrum resources are considered as a set
of resource units, which as bidders compete to obtain business while the
packages of the D2D pairs are auctioned off as goods in each auction round. We
first formulate the valuation of each resource unit, as a basis of the proposed
auction. And then a detailed non-monotonic descending price auction algorithm
is explained depending on the utility function that accounts for the channel
gain from D2D and the costs for the system. Further, we prove that the proposed
auction-based scheme is cheat-proof, and converges in a finite number of
iteration rounds. We explain non-monotonicity in the price update process and
show lower complexity compared to a traditional combinatorial allocation. The
simulation results demonstrate that the algorithm efficiently leads to a good
performance on the system sum rate.Comment: 26 pages, 6 fgures; IEEE Journals on Selected Areas in
Communications, 201
Linear attention is (maybe) all you need (to understand transformer optimization)
Transformer training is notoriously difficult, requiring a careful design of
optimizers and use of various heuristics. We make progress towards
understanding the subtleties of training Transformers by carefully studying a
simple yet canonical linearized shallow Transformer model. Specifically, we
train linear Transformers to solve regression tasks, inspired by J.~von Oswald
et al.~(ICML 2023), and K.~Ahn et al.~(NeurIPS 2023). Most importantly, we
observe that our proposed linearized models can reproduce several prominent
aspects of Transformer training dynamics. Consequently, the results obtained in
this paper suggest that a simple linearized Transformer model could actually be
a valuable, realistic abstraction for understanding Transformer optimization.Comment: Published at ICLR 202
- …