25,044 research outputs found

    Inverting estimating equations for causal inference on quantiles

    Full text link
    The causal inference literature frequently focuses on estimating the mean of the potential outcome, whereas the quantiles of the potential outcome may carry important additional information. We propose a universal approach, based on the inverse estimating equations, to generalize a wide class of causal inference solutions from estimating the mean of the potential outcome to its quantiles. We assume that an identifying moment function is available to identify the mean of the threshold-transformed potential outcome, based on which a convenient construction of the estimating equation of quantiles of potential outcome is proposed. In addition, we also give a general construction of the efficient influence functions of the mean and quantiles of potential outcomes, and identify their connection. We motivate estimators for the quantile estimands with the efficient influence function, and develop their asymptotic properties when either parametric models or data-adaptive machine learners are used to estimate the nuisance functions. A broad implication of our results is that one can rework the existing result for mean causal estimands to facilitate causal inference on quantiles, rather than starting from scratch. Our results are illustrated by several examples

    Apparent horizon and gravitational thermodynamics of Universe in the Eddington-Born-Infeld theory

    Full text link
    The thermodynamics of Universe in the Eddington-Born-Infeld (EBI) theory was restudied by utilizing the holographic-style gravitational equations that dominate the dynamics of the cosmical apparent horizon ΥA\Upsilon_{A} and the evolution of Universe. We started in rewriting the EBI action of the Palatini approach into the Bigravity-type action with an extra metric qμνq_{\mu\nu}. With the help of the holographic-style dynamical equations, we discussed the property of the cosmical apparent horizon ΥA\Upsilon_{A} including timelike, spacelike and null characters, which depends on the value of the parameter of state wmw_{m} in EBI Universe. The unified first law for the gravitational thermodynamics and the total energy differential for the open system enveloped by ΥA\Upsilon_{A} in EBI Universe were obtained. Finally, applying the positive-heat-out sign convention, we derived the generalized second law of gravitational thermodynamics in EBI universe.Comment: 23 pages, 0 figure

    Deciphering a novel image cipher based on mixed transformed Logistic maps

    Full text link
    Since John von Neumann suggested utilizing Logistic map as a random number generator in 1947, a great number of encryption schemes based on Logistic map and/or its variants have been proposed. This paper re-evaluates the security of an image cipher based on transformed logistic maps and proves that the image cipher can be deciphered efficiently under two different conditions: 1) two pairs of known plain-images and the corresponding cipher-images with computational complexity of O(218+L)O(2^{18}+L); 2) two pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(L)O(L), where LL is the number of pixels in the plain-image. In contrast, the required condition in the previous deciphering method is eighty-seven pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(27+L)O(2^{7}+L). In addition, three other security flaws existing in most Logistic-map-based ciphers are also reported.Comment: 10 pages, 2 figure

    Holographic Mutual Information of Two Disjoint Spheres

    Full text link
    We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1/n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play indispensable role in reading the leading order corrections to the bulk mutual information.Comment: 37 pages, 1 figure; significant revisions, corrected the discussions on the computations of the mutual information in CFT, conclusions unchange

    AIGC In China: Current Developments And Future Outlook

    Full text link
    The increasing attention given to AI Generated Content (AIGC) has brought a profound impact on various aspects of daily life, industrial manufacturing, and the academic sector. Recognizing the global trends and competitiveness in AIGC development, this study aims to analyze China's current status in the field. The investigation begins with an overview of the foundational technologies and current applications of AIGC. Subsequently, the study delves into the market status, policy landscape, and development trajectory of AIGC in China, utilizing keyword searches to identify relevant scholarly papers. Furthermore, the paper provides a comprehensive examination of AIGC products and their corresponding ecosystem, emphasizing the ecological construction of AIGC. Finally, this paper discusses the challenges and risks faced by the AIGC industry while presenting a forward-looking perspective on the industry's future based on competitive insights in AIGC
    • …
    corecore