85,344 research outputs found

    Energy-Throughput Tradeoff in Sustainable Cloud-RAN with Energy Harvesting

    Full text link
    In this paper, we investigate joint beamforming for energy-throughput tradeoff in a sustainable cloud radio access network system, where multiple base stations (BSs) powered by independent renewable energy sources will collaboratively transmit wireless information and energy to the data receiver and the energy receiver simultaneously. In order to obtain the optimal joint beamforming design over a finite time horizon, we formulate an optimization problem to maximize the throughput of the data receiver while guaranteeing sufficient RF charged energy of the energy receiver. Although such problem is non-convex, it can be relaxed into a convex form and upper bounded by the optimal value of the relaxed problem. We further prove tightness of the upper bound by showing the optimal solution to the relaxed problem is rank one. Motivated by the optimal solution, an efficient online algorithm is also proposed for practical implementation. Finally, extensive simulations are performed to verify the superiority of the proposed joint beamforming strategy to other beamforming designs.Comment: Accepted by ICC 201

    Analytical Potential Energy Function for the Ground State X^{1} Sigma^+ of LaCl

    Full text link
    The equilibrium geometry, harmonic frequency and dissociation energy of lanthanum monochloride have been calculated at B3LYP, MP2, QCISD(T) levels with energy-consistent relativistic effective core potentials. The possible electronic state and reasonable dissociation limit for the ground state are determined based on atomic and molecular reaction statics. Potential energy curve scans for the ground state X^{1} Sigma^+ have been carried out with B3LYP and QCISD(T) methods due to their better performance in bond energy calculations. We find the potential energy calculated with QCISD(T) method is about 0.5 eV larger than dissociation energy when the diatomic distance is as large as 0.8 nm. The problem that single-reference ab initio methods don't meet dissociation limit during calculations of lanthanide heavy-metal elements is analyzed. We propose the calculation scheme to derive analytical Murrell-Sorbie potential energy function and Dunham expansion at equilibrium position. Spectroscopic constants got by standard Dunham treatment are in good agreement with results of rotational analyses on spectroscopic experiments. The analytical function is of much realistic importance since it is possible to be applied to predict fine transitional structure and study reaction dynamic process.Comment: 10 pages, 1 figure, 3 table
    corecore