717 research outputs found
Why torus-unstable solar filaments experience failed eruption?
To investigate the factors that control the success and/or failure of solar
eruptions, we study the magnetic field and 3-Dimensional (3D) configuration of
16 filament eruptions during 2010 July - 2013 February. All these events, i.e.,
erupted but failed to be ejected to become a coronal mass ejection (CME), are
failed eruptions with the filament maximum height exceeding . The
magnetic field of filament source regions is approximated by a potential field
extrapolation method. The filament 3D configuration is reconstructed from three
vantage points by the observations of STEREO Ahead/Behind and SDO spacecraft.
We calculate the decay index at the apex of these failed filaments and find
that in 7 cases, their apex decay indexes exceed the theoretical threshold
() of the torus instability. We further determine the
orientation change or rotation angle of each filament top during the eruption.
Finally, the distribution of these events in the parameter space of rotation
angle versus decay index is established. Four distinct regimes in the parameter
space are empirically identified. We find that, all the torus-unstable cases
(decay index ), have a large rotation angles ranging from . The possible mechanisms leading to the rotation and failed eruption
are discussed. These results imply that, besides the torus instability, the
rotation motion during the eruption may also play a significant role in solar
eruptions
Magnetoelectric coupling induced by interfacial orbital reconstruction
The magnetoelectric coupling effect with profound physics and enormous
potential applications has provoked a great number of research activities in
materials science. Here, we report that the reversible orbital reconstruction
driven by ferroelectric polarization modulates the magnetic performance of
ferroelectric ferromagnetic heterostructure. Mn in plane orbital occupancy and
related interfacial exotic magnetic state are enhanced and weakened by the
negative and positive electric field, respectively. Our findings thus not only
present a broad opportunity to fill the missing member, orbital in the
mechanism of magnetoelectric coupling, but also make the orbital degree of
freedom straight forward to the application in microelectronic device.Comment: 26 pages, 5 figures, Accepted by Advanced Material
Clean and modified substrates for direct detection of living cells by surface-enhanced Raman spectroscopy
Iodide adsorption and electrochemical negative potential desorption were proposed and compared to obtain clean SERS substrates. The two methods can effectively eliminate the interference of surface impurities in the SERS detection. SERS signals of membranes of living cells with a good reproducibility have been obtained.NSFC[20825313, 20827003, 21021120456]; 973 program[2007CB935603, 2009CB930703]; Fundamental Research Funds for the Central Universities[2010121019]; China Postdoctoral Science Foundatio
Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water
Removal performance of arsenic in water by a novel magnetic chitosan nanoparticle (MCNP) with a diameter of about 10 nm, including adsorption kinetics, adsorption isotherm, main influencing factors, and regeneration effects, was investigated. In addition, the effective separation way for MCNP particles and the new application mode were developed to prompt the application of MCNP. The results showed that MCNP exhibited excellent ability to remove As(V) and As(III) from water in a wide range of initial concentrations, MCNP removed arsenic rapidly with more than 95% of arsenic adsorbed in initial 15 min, and the whole process fitted well to the pseudo-second-order model. The Langmuir model fits the equilibrium data better than the Freundlich isotherm model and the maximum adsorption capacities of As(V) and As(III) were 65.5 mg/g and 60.2 mg/g, respectively. The saturated MCNP could be easily regenerated and kept more than 95% of initial adsorption capacity stable after 10 regeneration cycles. A new magnetic material separation method was established to separate MCNP effectively. The continuous-operation instrument developed based on the MCNP could operate stably and guarantee that the concentration of arsenic meets the guideline limit of arsenic in drinking water regulated by the WHO
Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water
Removal performance of arsenic in water by a novel magnetic chitosan nanoparticle (MCNP) with a diameter of about 10 nm, including adsorption kinetics, adsorption isotherm, main influencing factors, and regeneration effects, was investigated. In addition, the effective separation way for MCNP particles and the new application mode were developed to prompt the application of MCNP. The results showed that MCNP exhibited excellent ability to remove As(V) and As(III) from water in a wide range of initial concentrations, MCNP removed arsenic rapidly with more than 95% of arsenic adsorbed in initial 15 min, and the whole process fitted well to the pseudo-second-order model. The Langmuir model fits the equilibrium data better than the Freundlich isotherm model and the maximum adsorption capacities of As(V) and As(III) were 65.5 mg/g and 60.2 mg/g, respectively. The saturated MCNP could be easily regenerated and kept more than 95% of initial adsorption capacity stable after 10 regeneration cycles. A new magnetic material separation method was established to separate MCNP effectively. The continuous-operation instrument developed based on the MCNP could operate stably and guarantee that the concentration of arsenic meets the guideline limit of arsenic in drinking water regulated by the WHO
Lesion Topography and Its Correlation With Etiology in Medullary Infarction: Analysis From a Multi-Center Stroke Study in China
Objectives: The lesion topography of medullary infarction (MI) is heterogeneous and its correlation with stroke etiology remains elusive. We aim to clarify the lesion pattern of MI and to assess its correlation with stroke etiology.Material and Methods: Of 1129 subjects with available DWI in SMART study (a multi-center trial concerning secondary stroke prevention in China) between April 2008 and December 2010, 43 patients with DWI confirmed MI (3.8%) were retrospectively evaluated. Lesions were categorized as lateral and medial medullary infarction (LMI and MMI, 33 and 10 subjects respectively) at 3 levels rostro-caudally and correlated with the stroke etiology. Clinical profiles and long-term prognosis were analyzed.Results: Large artery atherosclerosis, small vessel occlusion, cardiogenic embolism and artery dissection accounted for 29, 11, 1, and 2 infarcts, respectively. Large artery disease was the most common cause in LMI (24 of 33, 72.7%) whereas small vessel occlusion was not uncommon in MMI (5 of 10, 50.0%). Though the difference of infarct pattern between large artery atherosclerosis and small vessel occlusion was insignificant, two distinct lesion patterns were considered to be relevant: (1) Rostral MMI with continuous medial pontine infarctions were more likely attributed to small vessel occlusion than large artery atherosclerosis. Kameda et al. (2) MMI with ventral to dorsal extension were more often caused by large artery disease than small vessel occlusion. Median NIHSS at admission was 4. During a median follow-up of 17 months, 2 patients died and 2 experienced recurrent ischemic events, 39 of 41 subjects (95.1%) were functional independent (mRS 0–2).Conclusions: This multi-center study demonstrates that MI has distinct lesion pattern depending on various stroke etiologies and mechanisms. Future investigations with larger sample size should establish the lesion pattern of MI and validate its correlation with the stroke etiology and mechanisms, which might improve stroke management
- …