72,606 research outputs found

    Universal thermodynamics of the one-dimensional attractive Hubbard model

    Full text link
    The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction, provides a paradigm for the physics of quantum many-body phenomena. Here by solving the thermodynamic Bethe ansatz equations we study the universal thermodynamics, quantum criticality and magnetism of the 1D attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures and the quantum fluid to non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z=2z=2 and correlation critical exponent ν=1/2\nu=1/2 in the quantum critical region whenever a phase transition occurs. Our results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D lattice.Comment: revised version, 23 pages, 9 figures, The detailed analysis for the previous short paper. Another long paper on the correlation functions will be presented in Null. Phys. B, see arXiv:1710.0874

    High SNR BER Comparison of Coherent and Differentially Coherent Modulation Schemes in Lognormal Fading Channels

    Full text link
    Using an auxiliary random variable technique, we prove that binary differential phase-shift keying and binary phase-shift keying have the same asymptotic bit-error rate performance in lognormal fading channels. We also show that differential quaternary phase-shift keying is exactly 2.32 dB worse than quaternary phase-shift keying over the lognormal fading channels in high signal-to-noise ratio regimes.Comment: Manuscript accepted for publication in IEEE Communications Letters (4 pages with 2 figures

    3-D Velocity Regulation for Nonholonomic Source Seeking Without Position Measurement

    Full text link
    We consider a three-dimensional problem of steering a nonholonomic vehicle to seek an unknown source of a spatially distributed signal field without any position measurement. In the literature, there exists an extremum seeking-based strategy under a constant forward velocity and tunable pitch and yaw velocities. Obviously, the vehicle with a constant forward velocity may exhibit certain overshoots in the seeking process and can not slow down even it approaches the source. To resolve this undesired behavior, this paper proposes a regulation strategy for the forward velocity along with the pitch and yaw velocities. Under such a strategy, the vehicle slows down near the source and stays within a small area as if it comes to a full stop, and controllers for angular velocities become succinct. We prove the local exponential convergence via the averaging technique. Finally, the theoretical results are illustrated with simulations.Comment: submitted to IEEE TCST;12 pages, 10 figure
    corecore