3,214 research outputs found
Feynman rules for Coulomb gauge QCD
The Coulomb gauge in nonabelian gauge theories is attractive in principle,
but beset with technical difficulties in perturbation theory. In addition to
ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms,
derived either by correctly ordering the operators in the Hamiltonian, or by
resolving ambiguous Feynman integrals. Renormalization theory depends on the
subgraph structure of ordinary Feynamn graphs. The CL terms do not have
subgraph structure. We show how to carry out enormalization in the presene of
CL terms, by re-expressing these as `pseudo-Feynman' inegrals. We also explain
how energy divergences cancel.Comment: 8 pages, 10 figue
Multi-temperature zone, droplet-based microreactor for increased temperature control in nanoparticle synthesis
Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
A QCD Analysis of the Mass Structure of the Nucleon
{}From the deep-inelastic momentum sum rule and the trace anomaly of the
energy-momentum tensor, I derive a separation of the nucleon mass into the
contributions of the quark and gluon kinetic and potential energies, the quark
masses, and the trace anomaly.Comment: 9 pages, MIT-CTP #2368, revtex with 1 tabl
A Co-axial Multi-tube Heat Exchanger Applicable for a Geothermal ORC Power Plant
AbstractThe study proposes a Co-axial multi-tube heat exchanger (CMTHE) applicable to geothermal heat extraction. The heat exchanger is integrated with a 50kW geothermal ORC power plant having a working fluid of R-245fa. Two field tests were performed to examine the system response of the ORC system subject to change of CMTHE. In case 1 where the flow rate in the shell-side of CMTHE is maintained, the pressure variation in the shell-side of CMTHE casts minor variations on heat extraction, ORC power generation, and ORC efficiency during the transient. Moreover, the effect of pressure has barely any influence of the final states of heat extraction, ORC power generation, and ORC efficiency. In case 2 where the pressure is preserved in the CMTHE, it is found that a decrease of flow rate in the CMTHE results in degradation of heat extraction, ORC power generation and ORC system efficiency. On the contrary, increasing the flow rate in the CMTHE leads to a rise of heat extraction, ORC power generation and ORC system efficiency. Unlike that in case 1, the effect of flow rate has a detectable effect on the final states of heat extraction, ORC power generation, and ORC efficiency
EVAPORATION OF QUARK DROPS DURING THE COSMOLOGICAL Q-H TRANSITION
We have carried out a study of the hydrodynamics of disconnected quark
regions during the final stages of the cosmological quark-hadron transition. A
set of relativistic Lagrangian equations is presented for following the
evaporation of a single quark drop and results from the numerical solution of
this are discussed. A self-similar solution is shown to exist and the formation
of baryon number density inhomogeneities at the end of the drop contraction is
discussed.Comment: 12 pages Phys. Rev. format, uuencoded postscript file including 12
figure
Hadronic Charmed Meson Decays Involving Axial Vector Mesons
Cabibbo-allowed charmed meson decays into a pseudoscalar meson and an
axial-vector meson are studied. The charm to axial-vector meson transition form
factors are evaluated in the Isgur-Scora-Grinstein-Wise quark model. The dipole
momentum dependence of the transition form factor and the presence of
a sizable long-distance -exchange are the two key ingredients for
understanding the data of . The mixing angle of
the strange axial-vector mesons is found to be or
from decays. The study of decays excludes the positive mixing-angle
solutions. It is pointed out that an observation of the decay at the level of will rule out
and favor the solution .
Though the decays are color suppressed, they are
comparable to and even larger than the color-allowed counterparts: and . The finite width effect of the axial-vector resonance is
examined. It becomes important for in particular when its width is
near 600 MeV.Comment: 19 page
Uniaxial Phase Transition in Si : Ab initio Calculations
Based on a previously proposed thermodynamic analysis, we study the relative
stabilities of five Si phases under uniaxial compression using ab initio
methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The
possible phase-transition patterns were investigated by considering the phase
transitions between any two chosen phases of the five phases. By analyzing the
different conributions to the relative pahse stability, we identified the most
important factors in reducing the phase-transition pressures at uniaxial
compression. We also show that it is possible to have phase transitions occur
only when the phases are under uniaxial compression, in spite of no phase
transition when under hydrostatic commpression. Taking all five phases into
consideration, the phase diagram at uniaxial compression was constructed for
pressures under 20 GPa. The stable phases were found to be diamond, beta-tin
and sh structures, i.e. the same as those when under hydrostatic condition.
According to the phase diagram, direct phase transition from the diamond to the
sh phase is possible if the applied uniaxial pressures, on increasing, satisfy
the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on
increeasing pressures is also possible if the applied uniaxial pressures are
varied from the condition of Px>Pz, on which the phase of sh is stable, to that
of Px<Pz, on which the beta-tin is stable
- …