34,222 research outputs found
Busemann functions and barrier functions
We show that Busemann functions on a smooth, non-compact, complete,
boundaryless, connected Riemannian manifold are viscosity solutions with
respect to the Hamilton-Jacobi equation determined by the Riemannian metric and
consequently they are locally semi-concave with linear modulus. We also
analysis the structure of singularity sets of Busemann functions. Moreover we
study barrier functions, which are analogues to Mather's barrier functions in
Mather theory, and provide some fundamental properties. Based on barrier
functions, we could define some relations on the set of lines and thus classify
them. We also discuss some initial relations with the ideal boundary of the
Riemannian manifold.Comment: comments are welcome
Testing the Universal Structured Jet Models of Gamma-Ray Bursts by BATSE Observations
Assuming that the observed gamma-ray burst (GRB) rate as a function of
redshift is proportional to a corrected star formation rate, we derive the
empirical distribution of the viewing angles of long BATSE GRBs, , and the distribution of these bursts in the plane of
against redshift, , by using a tight correlation between
) and ). Our results show that
is well fitted by a log-normal distribution centering at with a width of . We test different
universal structured jet models by comparing model predictions with our
empirical results. To make the comparisons reasonable, an "effective"
threshold, which corresponds to the sample selection criteria of the long GRB
sample, is used. We find that the predictions of a two-Gaussian jet model are
roughly consistent with our empirical results. A brief discussion shows that
cosmological effect on the relation does not
significantly affect our results, but sample selection effects on this
relationship might significantly influence our results.Comment: 5 pages, 6 figures, accepted for publication in A
Illusion Media: Generating Virtual Objects Using Realizable Metamaterials
We propose a class of optical transformation media, illusion media, which
render the enclosed object invisible and generate one or more virtual objects
as desired. We apply the proposed media to design a microwave device, which
transforms an actual object into two virtual objects. Such an illusion device
exhibits unusual electromagnetic behavior as verified by full-wave simulations.
Different from the published illusion devices which are composed of left-handed
materials with simultaneously negative permittivity and permeability, the
proposed illusion media have finite and positive permittivity and permeability.
Hence the designed device could be realizable using artificial metamaterials.Comment: 9 pages, 4 figures, published in Appl. Phys. Lett
- …
