1,625 research outputs found
Study of f_0(980) and f_0(1500) from B_s \to f_0(980)\pi, f_0(1500)\pi Decays
In this paper, we analyze the scalar mesons and from
the decays within Perturbative
QCD approach. From the leading order calculations, we find that (a) in the
allowed mixing angle ranges, the branching ratio of is about , which is smaller than
that of (the difference is a few times even one
order); (b) the decay is better to distinguish
between the lowest lying state or the first excited state for ,
because the branching ratios for two scenarios have about one-order difference
in most of the mixing angle ranges; and (c) the direct CP asymmetries of for two scenarios also exists great difference. In
scenario II, the variation range of the value according to the mixing angle is very small, except for
the values corresponding to the mixing angles being near or
, while the variation range of in scenario I is very large. Compared with the future data for
the decay , it is ease to determine the nature
of the scalar meson .Comment: 16 pages, 3 figures, Revte
The evolution of cosmic string loops in Kerr-de Sitter spacetimes
The equation of cosmic string loops in Kerr-de Sitter spacetimes is derived.
Having solved the equation numerically, we find that the loops can expand and
exist except for too small ones.Comment: 8 page
Quantum Langevin theory of excess noise
In an earlier work [P. J. Bardroff and S. Stenholm], we have derived a fully
quantum mechanical description of excess noise in strongly damped lasers. This
theory is used here to derive the corresponding quantum Langevin equations.
Taking the semi-classical limit of these we are able to regain the starting
point of Siegman's treatment of excess noise [Phys. Rev. A 39, 1253 (1989)].
Our results essentially constitute a quantum derivation of his theory and allow
some generalizations.Comment: 9 pages, 0 figures, revte
The Proton Spin and Flavor Structure in the Chiral Quark Model
After a pedagogical review of the simple constituent quark model and deep
inelastic sum rules, we describe how a quark sea as produced by the emission of
internal Goldstone bosons by the valence quarks can account for the observed
features of proton spin and flavor structures. Some issues concerning the
strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming
Winter School (March 1997), to be published by Springer-Verlag under the
title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer
Charmless hadronic decays and new physics effects in the general two-Higgs doublet models
Based on the low-energy effective Hamiltonian with the generalized
factorization, we calculate the new physics contributions to the branching
ratios of the two-body charmless hadronic decays of and mesons
induced by the new gluonic and electroweak charged-Higgs penguin diagrams in
the general two-Higgs doublet models (models I, II and III). Within the
considered parameter space, we find that: (a) the new physics effects from new
gluonic penguin diagrams strongly dominate over those from the new -
and - penguin diagrams; (b) in models I and II, new physics contributions
to most studied B meson decay channels are rather small in size: from -15% to
20%; (c) in model III, however, the new physics enhancements to the
penguin-dominated decay modes can be significant, , and
therefore are measurable in forthcoming high precision B experiments; (d) the
new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in
model III, , and hence provide a simple and plausible new
physics interpretation for the observed unexpectedly large B \to K \etap
decay rates; (e) the theoretical predictions for and
in model III are still consistent with the data
within errors; (f) the significant new physics enhancements to the
branching ratios of and decays are helpful to improve the
agreement between the data and the theoretical predictions; (g) the theoretical
predictions of in the 2HDM's are generally
consistent with experimental measurements and upper limits ()Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections,
final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4
Composition of the Pseudoscalar Eta and Eta' Mesons
The composition of the eta and eta' mesons has long been a source of
discussion and is of current interest with new experimental results appearing.
We investigate what can be learnt from a number of different processes: V to P
gamma and P to V gamma (V and P are light vector and pseudoscalar mesons
respectively), P to gamma gamma, J/psi,psi' to P gamma, J/psi,psi' to P V, and
chi_{c0,2} to PP. These constrain the eta-eta' mixing angle to a consistent
value, phi approx 42 degrees; we find that the c cbar components are lesssim 5%
in amplitude. We also find that, while the data hint at a small gluonic
component in the eta', the conclusions depend sensitively on unknown form
factors associated with exclusive dynamics. In addition, we predict BR(psi' to
eta' gamma) approx 1 10^{-5} and BR(chi_{c0} to eta eta') approx 2 10^{-5} - 1
10^{-4}. We provide a method to test the mixing using chi_{c2} to eta eta, eta'
eta', and eta eta' modes and make some general observations on chi_{c0,2}
decays. We also survey the semileptonic and hadronic decays of bottom and
charmed mesons and find some modes where the mixing angle can be extracted
cleanly with the current experimental data, some where more data will allow
this, and some where a more detailed knowledge of the different amplitudes is
required.Comment: 34 pages, 11 figures. v2: version published in JHEP, added
substantial section on B and D meson electroweak decays, added comment on
psi' to eta(')/eta_c gamma, Figs 5 and 6 split and made clearer, added
references, other minor revisions which don't change conclusion
Study of and from and Decays
We use the decay modes and to
study the scalar mesons and within perturbative QCD
framework. For , we perform our calculation in two
scenarios of the scalar meson spectrum. The results indicate that scenario II
is more favored by experimental data than scenario I. The important
contribution from annihilation diagrams can enhance the branching ratios about
50% in scenario I, and about 30% in scenario II. The predicted branching ratio
of in scenario I is also less favored by the experiments.
The direct CP asymmetries in are small, which are
consistent with the present experiments.Comment: More references are added. Published Versio
Instability of vortex array and transitions to turbulent states in rotating helium II
We consider superfluid helium inside a container which rotates at constant
angular velocity and investigate numerically the stability of the array of
quantized vortices in the presence of an imposed axial counterflow. This
problem was studied experimentally by Swanson {\it et al.}, who reported
evidence of instabilities at increasing axial flow but were not able to explain
their nature. We find that Kelvin waves on individual vortices become unstable
and grow in amplitude, until the amplitude of the waves becomes large enough
that vortex reconnections take place and the vortex array is destabilized. The
eventual nonlinear saturation of the instability consists of a turbulent tangle
of quantized vortices which is strongly polarized. The computed results compare
well with the experiments. Finally we suggest a theoretical explanation for the
second instability which was observed at higher values of the axial flow
On supersymmetric contributions to the CP asymmetry of the B -> phi K_S
We analyse the CP asymmetry of the B -> phi K_S process in general
supersymmetric models. In the framework of the mass insertion approximation, we
derive model independent limits for the mixing CP asymmetry. We show that
chromomagnetic type of operator may play an important role in accounting for
the deviation of the mixing CP asymmetry between B -> phi K_S and B -> J/psi
K_S processes observed by Belle and BaBar experiments. A possible correlation
between the direct and mixing CP asymmetry is also discussed. Finally, we apply
our result in minimal supergravity model and supersymmetric models with
non-universal soft terms.Comment: 19 pages, 3 figure
B --> Phi K_S and Supersymmetry
The rare decay B --> Phi K_S is a well-known probe of physics beyond the
Standard Model because it arises only through loop effects yet has the same
time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data
suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible
explanations, including contributions mediated by gluino loops and by Higgs
bosons. Chirality-preserving LL and RR gluino contributions are generically
small, unless gluinos and squarks masses are close to the current lower bounds.
Higgs contributions are also too small to explain a large asymmetry if we
impose the current upper limit on B(B_s --> mu mu). On the other hand,
chirality-flipping LR and RL gluino contributions can provide sizable effects
and while remaining consistent with related results in B --> Psi K_S, Delta
M_s, B --> X_s gamma and other processes. We discuss how the LR and RL
insertions can be distinguished using other observables, and we provide a
string-based model and other estimates to show that the needed sizes of mass
insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions
of other recent works on this topic. Added discussions & plots for gluino
mass dependence and effects of theoretical uncertaintie
- …
