2 research outputs found

    Auxin regulates adventitious root formation in tomato cuttings

    Get PDF
    Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis.https://doi.org/10.1186/s12870-019-2002-

    Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics

    No full text
    Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8 could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together, these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii
    corecore